# Convergence of arithmetic and geometric means of the n-th root of a sequence of certain binomial coefficients

#### Introduction

Blaise Pascal first introduced the triangle that would later come to hold his name , although in modern notations the so-called binomial coefficient denoted by $n \choose k$ may be more familiar to the reader. We shall prove a few interesting results regarding a sequence of the $n$-th root of means of the set of binomial coefficients
\begin{equation}\label{binomial}
{n \choose 0}, {n \choose 1}, {n \choose 2}, {\cdots}, {n \choose n}.
\end{equation}
In particular, if $A_n$ is the arithmetic mean of (\ref{binomial}) and $G_n$ is the geometric mean of (\ref{binomial}), we will show that the infinite sequences
\begin{equation*}
S_A = A_1, \sqrt{A_2}, \sqrt{A_3}, \sqrt{A_4}, \cdots, \quad S_G = G_1, \sqrt{G_2}, \sqrt{G_3}, \sqrt{G_4}, \cdots
\end{equation*}
converge to $2$ and $\sqrt{e}$ respectively.

#### Arithmetic mean

Let $P_n$ be the sum of the of sequence (\ref{binomial}), i.e.
\begin{equation*}
P_n = {n \choose 0} + {n \choose 1} + {n \choose 2} + {\cdots} + {n \choose n} = \sum\limits_{i=0}^{n}{n \choose i}.
\end{equation*}
Recall that
\begin{equation*}
{j \choose k} = {j-1 \choose k-1} + {j-1 \choose k}.
\end{equation*}
If we let $P_n = 0$ for $n < 0$ and let $P^m_n$ be the $m$th term of $P_n$, then \begin{equation} P^m_n = P^{m-1}_{n-1} + P^{m}_{n-1}, \end{equation} which is to say that every term of $P_n$ is composed of terms of $P_{n-1}$. In fact, every term of $P_{n-1}$ is used twice by $P_n$; for example $P^0_{n} = P^0_{n-1}$, $P^1_{n} = P^0_{n-1} + P^1_{n-1}$, $P^2_{n} = P^1_{n-1} + P^2_{n-1}$, $P^3_{n} = P^2_{n-1} + P^3_{n-1}$. Since $P_n$ contains $n+1$ terms, all $n$ terms of $P_{n-1}$ will be used exactly twice, and therefore \begin{equation} P_n = 2P_{n-1}. \end{equation} Lastly since $P_0 = 1 = 2^0$ we arrive at \begin{equation} \label{pn} P_n=2^n. \end{equation} We wish to find the arithmetic mean of $P_n$, which contains $n+1$ terms, so \begin{equation} A_n = \dfrac{P_n}{n+1}. \end{equation} Equipped with (\ref{pn}) we can see that $S^n_A$, the $n$th term of the sequence $S_A$ we can see that \begin{equation} S^n_A = \sqrt[n]{A_n}=\sqrt[n]{\dfrac{P_n}{n+1}} = \sqrt[n]{\dfrac{2^n}{n+1}}. \end{equation} We wish to evaluate \begin{equation} \lim\limits_{n \rightarrow \infty}{S_A} = \lim\limits_{n \rightarrow \infty}{\sqrt[n]{\dfrac{2^n}{n+1}}}. \end{equation} We can reduce by first rewritting the limit as an exponential and applying the logarithm through: \begin{equation} \lim\limits_{n \rightarrow \infty}{\sqrt[n]{\dfrac{2^n}{n+1}}} = \lim\limits_{n \rightarrow \infty}{e^{\ln\left(\left(\dfrac{2^n}{n+1}\right)^{\frac{1}{n}}\right)}} = \lim\limits_{n \rightarrow \infty}{e^{\dfrac{\ln\left(\frac{2^n}{n+1}\right)}{n}}}. \end{equation} Pulling out the exponential function and expanding the logarithms, \begin{equation} \lim\limits_{n \rightarrow \infty}{e^{\dfrac{\ln\left(\frac{2^n}{n+1}\right)}{n}}} = e^{\lim\limits_{n \rightarrow \infty}{\dfrac{n \ln(2) - \ln(n+1)}{n}}} = e^{\lim\limits_{n \rightarrow \infty}{\ln(2)}-\lim\limits_{n \rightarrow \infty}{\dfrac{\ln(n+1)}{n}}} \end{equation} Since $n$ grows faster than $\ln(n+1)$, $\lim\limits_{n \rightarrow \infty}{\frac{\ln(n+1)}{n}}=0$, and $\ln(2)$ is a constant, \begin{equation} e^{\lim\limits_{n \rightarrow \infty}{\ln(2)}-\lim\limits_{n \rightarrow \infty}{\dfrac{\ln(n+1)}{n}}} = e^{\ln(2)} = 2, \end{equation} giving is the result that \begin{equation} \lim\limits_{n \rightarrow \infty}{S_A} = 2. \end{equation}

#### Geometric mean

Let $Q_n$ be the product of the sequence (\ref{binomial}0):
\begin{equation}
Q_n = {n \choose 0}{n \choose 1}{n \choose 2}{\cdots}{n \choose n} = \prod\limits_{i=0}^{n}{n \choose i}.
\end{equation}
Recall that
\begin{equation}
{n \choose k} = \dfrac{n!}{k!(n-k)!}.
\end{equation}
So,
\begin{equation}
Q_n = \prod\limits_{i=0}^{n}{n \choose i} = \dfrac{n!}{0!(n-0)!}\dfrac{n!}{1!(n-1)!}\dfrac{n!}{2!(n-2)!}\cdots\dfrac{n!}{n!(n-n)!}.
\end{equation}
We can pull out the constant factors in the denominator, leaving us with
\begin{equation}
Q_n = \dfrac{1}{0!1!2!\cdots n!}\left(\dfrac{n!}{(n-0)!}\dfrac{n!}{(n-1)!}\dfrac{n!}{(n-2)!}\cdots\dfrac{n!}{(n-n)!}\right).
\end{equation}
Let us consider what happens when we divide out each factor inside the parenthesis. The first factor will be $1$, the second will be $n$, the third will be $n(n-1)$, the fourth will be $n(n-1)(n-2)$ and so forth. How many $n$s will this product have? Each factor (except the first) has an $n$ and $Q_n$ has $n+1$ of these factors, so the product will have $n$ number of $n$s, or $n^n$. Likewise for $(n-1)$ there will be $(n-1)$ factors with it, so the product will have $(n-1)^(n-1)$. Continuing this we arrive at
\begin{equation}\label{qn_powers}
Q_n = \dfrac{n^n(n-1)^{n-1}(n-2)^{n-2}\cdots 2^2 1}{0!1!2!\cdots n!}.
\end{equation}
The numerator of (\ref{qn_powers}) is the hyperfactorial , denoted as $H(n)$ . The denominator is the Barnes G-function , denoted as $G(n)$ for $n+2$. So, we can rewrite (\ref{qn_powers}) as
\begin{equation}\label{qcompact}
Q_n = \dfrac{H(n)}{G(n+2)}.
\end{equation}
The Barnes G-function is defined as
\begin{equation}\label{gfunction}
G(n) = \dfrac{\Gamma(n)^{n-1}}{H(n-1)}.
\end{equation}
Plugging (\ref{gfunction}) into (\ref{qcompact}), we now have
\begin{equation}
Q_n = \dfrac{H(n)}{G(n+2)} = \dfrac{H(n)}{\left[\dfrac{\Gamma(n+2)^{n+2-1}}{H(n+2-1)}\right]} = \dfrac{H(n)H(n+1)}{\Gamma(n+2)^{n+1}}.
\end{equation}
Because $\Gamma(n)=(n-1)!$ when $n$ is a non-negative integer (which is always true for our $n$) the denominator can be simplified to
\begin{equation}
\dfrac{H(n)H(n+1)}{(n+1)!^{n+1}} = \dfrac{H(n)H(n)(n+1)^{n+1}}{n!^{n+1}(n+1)^{n+1}} = \dfrac{H(n)^2}{n!^{n+1}}.
\end{equation}
We wish to find the geometric mean of (\ref{binomial}). The geometric mean of $n$ numbers is the product of the numbers to the $n$th root; $Q_n$ is the product of (\ref{binomial}), which has $n+1$ numbers, so the geometric mean $G_n$ of (\ref{binomial}) is
\begin{equation}
G_n=\sqrt[n+1]{Q_n} = \sqrt[n+1]{\dfrac{H(n)^2}{n!^{n+1}}} = \dfrac{H(n)^{\frac{2}{n+1}}}{n!}.
\end{equation}
Ultimately we are interested in the convergence of the sequence $S_G = G_1,\sqrt{G_2},\sqrt{G_3}$, so if $S^n_G$ is the $n$th term of this sequence, then
\begin{equation}
S^n_G = \sqrt[n]{G_n} = \sqrt[n]{\dfrac{H(n)^{\frac{2}{n+1}}}{n!}}.
\end{equation}
Does $S_G$ converge? To answer this we will first consider a new sequence $S’$ where $S’_n$, the $n$th term of $S’$, is
\begin{equation}\label{sprime}
S’_n = (S^n_G)^2.
\end{equation}
In other words, the terms of $S’$ are the squares of the terms of $S_G$. Continuing,
\begin{equation}
S’_n = (S^n_G)^2 = \left(\dfrac{H(n)^{\frac{2}{n+1}}}{n!}\right)^{\frac{2}{n}} = \dfrac{H(n)^{\frac{4}{n^2+n}}}{n!^{\frac{2}{n}}}
\end{equation}
Now is a convenient time to mention :
\begin{equation}\label{e}
\lim\limits_{n \rightarrow \infty}{\dfrac{n}{\sqrt[n]{n!}}} = e.
\end{equation}
If we take the limit of the difference of (\ref{e}) and $S’$, we find
\begin{equation}
\lim\limits_{n \rightarrow \infty}{\left(\dfrac{n}{\sqrt[n]{n!}} – \dfrac{H(n)^{\frac{4}{n^2+n}}}{n!^{\frac{2}{n}}}\right)} =
\lim\limits_{n \rightarrow \infty}{\left(\dfrac{n\sqrt[n]{n!} – H(n)^{\frac{4}{n^2+n}}}{n!^{\frac{2}{n}}}\right)} = 0.
\end{equation}
Since the difference of the two limits is zero, we can conclude
\begin{equation} \label{squarede}
\lim\limits_{n \rightarrow \infty}{\left(\dfrac{n}{\sqrt[n]{n!}} – \dfrac{H(n)^{\frac{4}{n^2+n}}}{n!^{\frac{2}{n}}}\right)} = 0 \Rightarrow
\lim\limits_{n \rightarrow \infty}{\dfrac{n}{\sqrt[n]{n!}}} = \lim\limits_{n \rightarrow \infty}\dfrac{H(n)^{\frac{4}{n^2+n}}}{n!^{\frac{2}{n}}} \Rightarrow \lim\limits_{n \rightarrow \infty}\dfrac{H(n)^{\frac{4}{n^2+n}}}{n!^{\frac{2}{n}}} = e.
\end{equation}
$S_G$ is bounded above by $S’$, so it converges and by (\ref{squarede}) and (\ref{sprime})
\begin{equation}
\lim\limits_{n \rightarrow \infty}{S’} = \lim\limits_{n \rightarrow \infty}{(S_G)^2} \Rightarrow
\lim\limits_{n \rightarrow \infty}{S’} = \left(\lim\limits_{n \rightarrow \infty}{S_G}\right)^2 \Rightarrow e = \left(\lim\limits_{n \rightarrow \infty}{S_G}\right)^2.
\end{equation}
Finally,
\begin{equation}
\lim\limits_{n \rightarrow \infty}{S_G} = \sqrt{e}.
\end{equation}

 Katz, Victor J. A History of Mathematics: An Introduction. Boston: Addison-Wesley, 2009.
 Young, Robert M. Excursions in Calculus: An Interplay of the Continuous and the Discrete. Washington, D.C.: The Mathematical Association of America, 1992.
 Azarian, M K. 2007. On the hyperfactorial function, hypertriangular function, and discriminants of certain polynomials. International Journal of Pure and Applied Mathematics 36, (2): 249-255
 Barnes, E. W. 1900. The theory of the G-function. Quarterly Journal of Pure and Applied Mathematics 31, 264-314.
 Weisstein, Eric W. “Stirling’s Approximation.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/StirlingsApproximation.html

Posted

in

by

Tags:

### 38 responses to “Convergence of arithmetic and geometric means of the n-th root of a sequence of certain binomial coefficients”

1. 美国怎么不想自己的本土呢？36枚核武器落入美国本土会是什么样的后果。
http://www.longyao.net.cn http://www.longyao.net.cn/

2. 怀念老毛时代。现在的主席太文气了没一点大国的霸气。无与
http://www.mszex.com http://www.mszex.com

3. 在一家人面前没必要吧？有客人的话还是必要的。
http://www.guangzong.net.cn http://www.guangzong.net.cn/

4. 说安装降落伞的鸟人，你们太没知识了！你们知道飞机高空飞行时的内外压力比吗？即使一个子弹孔也能使飞机失去控制！尼玛你打得开门？即便是能打开，也被吸出去了，还没打开伞早已经死于呼吸困难，更不要说有没有机会打开降落伞！无知识真可怕！你以为就你考虑到安全问题？即使能实现，因此而让机票价格大涨，尼玛又在这里叫春了
汉南网站建设 http://www.hnwzjs.com.cn

5. 臆测中国占领岛屿？不争一城一池，消灭敌有生力量才是王道
盐城市天行软件有限公司 http://www.szgjp.com

6. 不管怎么态度好，也不能买，不要忘了国耻！小日本！
宁波网站建设 http://www.nbwzjs.cn

7. 医生工资不高，高的是提成。提成是什么？有平白无故的给提成给的比工资多好几倍的？
兴义市全盈商贸有限公司 http://www.cnLianguo.com

8. 憋屈啊！百姓面前耀武扬威，侵略者面前屁都不敢放~！
青山网站建设 http://www.Qswzjs.cn

9. 如果爆发战争，一定会把战火烧到美国本土。让美国佬知道战争的痛。
http://www.jiuzihenews.cn http://www.jiuzihenews.cn/

10. 穷与富，钱就不能花在小日本，包括美国佬，每个国家要想强大，首先经济得跟上，国人60个亿给了小日本，然后小日本就又有资本打咱们中国人了，国内有那么多穷人，为什么不舍得救济，小日本真比国人还可爱？
光谷网站建设 http://www.ggwzjs.com.cn

11. 未经历过战争，不知道战争之时会不会怕死，但是就算我不当兵我也把自己的所有捐给国家，捐给军队，干死那帮狗日的
山西坦达清洁设备有限公司 http://www.sxtdqj.com

12. 念了两天26个字母就把自己当洋人了，该骂！
http://www.jxsichuang.com http://www.jxsichuang.com

13. 你的爱国情怀我很支持，不过指挥的话还是交给我们的专业人才吧，这样能灭更多的小日本…哈
http://www.taizhong.net.cn http://www.taizhong.net.cn/

14. 你真别说，日本那个保温瓶真是质量过硬，保持一整天都那么热。我家人手一个
德兴在线 http://www.dexingnews.cn/

15. 产后抑郁，真的很吓人，恨孩子出生在这样的家庭，也同情她的母亲！
安徽泰源建筑工程有限责任公司 http://www.ahyxzx.com

16. 中国,加油.加油,加油………………………………….
http://www.cxhfwL.com http://www.cxhfwL.com

17. 这是一种卫生习惯跟孝顺父母没有关系，只是表达方式改变一下就好了，父母那辈的人很多都是无法接受的！
http://www.zezhou.net.cn http://www.zezhou.net.cn/

18. 飞机一年才出两三起事故汽车每天不知有多少起事故难道就不做汽车了
大兴网站建设 http://www.dxwzjs.cn/

19. 这能控制的吗？能就不是病了，有些严重的还会有精神分裂的情况出现
永年县聚联紧固件制造有限公司 http://www.ynjLjgj.com

20. 去日本的都是汉奸，都他妈的贱逼。好了伤疤忘了疼，我最配服韩国人。人家从来不买日本东西
http://www.999Loveyou.com http://www.999Loveyou.com

21. 这就叫以其人之道还其人之身！相信中俄人民的情谊和精神足以砰醒霸权主义挑衅者的美梦！祝中俄军事演习圆满成功！期待世界和平！热泪盈眶啊~激动了
http://www.letingba.cn http://www.letingba.cn/

22. 我们不要日—本人的种！给俄罗斯老大哥就行了
http://www.huguan.net.cn http://www.huguan.net.cn/

23. 苏联老大哥，你终于会说这些话了，我心里好感动，我真的是实在好感动，我好感谢你！中俄共和国万岁
我本沉默传奇发布网 https://www.wobenchenmo.com.cn/

24. 反正99.9%的人是不会用降落伞的，95%的人是不敢跳机的。
http://www.bjjjdc.com http://www.bjjjdc.com

25. 考核医师职业师证六十分居然就算合格？假如医病一百人，是不是四十个就有生命风险？不信去问问我说的执业证是否属实吧
沈阳新闻网 http://www.shenyangba.org.cn/

26. 规模搞大点，在几处搞，比如临近日韩，能在美国家门口最好
彰武门户网 http://www.zhangwu.net.cn/

27. 扬我国威啊！支持！！！！！终于能出口气了！！！！！
http://www.sxyfywz.com http://www.sxyfywz.com

28. 借助这个机会顺便把台湾也给收了 同时消灭一下美国佬的嚣张气焰 老美觉得自己可以了 那我们就开始战斗吧
汉南网站建设 http://www.hnwzjs.com.cn

29. 哎“ 已经没有脾气了“中国呀“还说是龙“ 我看是鼻涕虫“亲的的祖国呀“ 你再不硬起“我都决定移民了“ 移民菲律宾去了“`
东城网站建设 http://www.dcwzjs.com.cn/

30. 就别bb了，总之一句话，阎王三更要收你，不会留你到五更。不论坐飞机也好，喝水也好，一切都是命中注定。所以平时还是要多做善事，多积点阴德。才能远离灾难，好人一生平安
http://www.hunyuan.net.cn http://www.hunyuan.net.cn/

31. 你也大笨了，还好意思说出来，你先打人家吃亏了，别说，下次再去杀一个。
曲靖市宁江木业有限公司 http://www.ynnjmy.com

32. 只敢欺负小国，也只能打赢小国，从打日本，打朝鲜，打伊拉克，叙利亚等等打中国打一次败一次
郫县华伟包装厂 http://www.cdhwms.com

33. 娃娃的话没有错啊，可能爸爸当时心情不怎么好，才会迁怒的。
武汉体验式教育 https://www.tstysjy.com/

34. 睁开眼吧，小心看吧，哪个愿臣虏自认；因为畏缩与忍让，人家骄气日盛；开口叫吧，高声叫吧，这里是全国皆兵，历来强盗要侵入，最终必送命。万里长城永不倒，千里黄河水滔滔；江山秀丽，叠彩峰岭，问我国家哪像染病。冲开血路挥手上吧，要致力国家中兴，岂让国土再遭践踏…….. ——电视剧《霍元甲》主题曲
永济门户网 http://www.yongjinews.cn/

35. 该打一打，要有自己主权，不要怕美国狗子给它们做后台，想打就打。
http://www.tanghainews.cn http://www.tanghainews.cn/

36. 中国的军事力量是维护国家主权的需要，中国发展军事用不着看美国的颜色；越看越受欺负。要美国不欺负中国，只能是中国具备了足以让美国恐惧而不敢轻举妄动的军力。美国利用日本这个地痞流氓国家，一再给中国找麻烦，表面上看似乎它在耍横，实际上却恰恰说明它恐惧中国的发展，它不喜欢中国进一步强大起来。越是这样，中国越要大力发展军事。没有强大的军事保障，中国要和平发展，要实现现代化，只能是一厢情愿。
杭州网站建设 http://www.hzwzjs.net.cn

37. 这点小事不要做大动作了吧?让我们的媒体去做好了，他们有好多口水淹死它们算了.
北京飞炫空间展览展示有限公司 http://www.feixuankj.com

38. 门诊天天忙的跟打仗似的，你跪地上求医生打你人家都没空。二十几个医务人员这是门诊整整一层楼的医务人员啊，能说说为什么这么多人全部放下工作不做去“打”你吗？
江岸网站建设 http://www.jawzjs.com.cn