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Scheduling a conference to minimize attendee preference
conflicts

Jeffrey Quesnelle · Daniel Steffy

Abstract This paper describes a conference scheduling (or timetabling) problem where, at
the time of registration, participants indicate preferences for events within the conference
that they would like to attend. Based upon these preferences, an assignment of events to
rooms and time slots should be determined that minimizes the number of attendee pref-
erence conflicts and satisfies a number of hard constraints. Ideally the schedule should be
constructed so that for most, or all, participants the events that they would like to attend are
assigned to different time slots. We show that our problem, and several variants of it, are
NP-hard. An integer programming model is developed to solve the problem and a computa-
tional study of this model is performed on instances generated from real data. Improvements
to the model, including a symmetry breaking reformulation and a dualization of some hard
constraints, are shown to significantly improve solution times, making the problem tractable
for the desired real world application.

1 Introduction

This project was motivated by the problem of scheduling events within PenguiCon [5], a
conference organized by the open-source community in Michigan. The conference typically
includes approximately 250 events such as lectures, demonstrations and panel discussions,
all of which must be scheduled into rooms and time slots. Many of the events involve multi-
ple presenters/panelists, and many presenters participate in more than one event; it is a hard
constraint that no speaker can be multi-booked during a given time period. Furthermore,
the registration website will give conference participants the ability to indicate preferences
for events before the schedule is generated, giving the extra complication of trying to gen-
erate the schedule based on these responses that minimizes participant schedule conflicts.
Our problem is related to previously studied conference and class scheduling problems but
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includes what we believe is a novel and difficult combination of constraints and objectives.
The goal of this paper is to model our problem, relate it to previous work, and implement
solution methods that can be deployed to schedule the PenguiCon conference in practice.

In Section 2 we discuss some related work. In Section 3 we formally describe our prob-
lem and relate it to previous work, we also show that our scheduling problem, and some
variants, are all NP-hard. Section 4 describes an integer programming model for the prob-
lem. Various improvements to the model are also described and evaluated computationally.
Section 5 provides concluding remarks.

2 Background and related work

One of the oldest scheduling problems that has been studied is the timetable design problem
(TTD). Given a set of time slots, a set of teachers and their available teaching hours, and
a matrix describing which courses each teacher is required to teach, the TTD problem is
the problem of determining if there exists a schedule that satisfies the constraints. TTD was
shown to be NP-Complete in 1976 via reduction from 3-SAT [1]. However it is notable that
certain variants of the TTD problem are known to be polynomial time solvable. For example,
if each teacher is only available for up to two hours, or each teacher is able to teach any class,
then the problem is solvable in polynomial time [2].

The basic TTD model often doesn’t map well onto several common problems such as
scheduling courses for a university. Specifically, the requirement that a teacher must teach
certain classes may be relaxed to describing those classes they are willing to teach. This is
know as the Basic Course Scheduling problem (BCS); it was shown to be solvable in poly-
nomial time by Lovelace [3]. Extensions of the BCS, for example including the requirement
that courses are assigned to rooms, results again in an NP-hard problem.

The scheduling problem considered in this paper more closely resembles the TTD prob-
lem, before introducing it we will give a precise formulation of the TTD. Here we denote
the decision variables as a function f , which gives the assignment of presenters to talks and
hours. We henceforth refer to the courses, or events as talks. We also assume that all talks
have the same length and introduce a set of hours which is used to represent the set of time
slots in which talks can be scheduled.

TIMETABLE DECISION PROBLEM

INSTANCE:
1. a finite set H of hours and numbers n and m indicating the number of presenters

and talks, respectively;
2. a collection P = {P1,P2, · · · ,Pn}, where Pi ⊆ H (there are n presenters and Pi is

the set of hours during which the ith presenter is available for presenting);
3. a collection T = {T1,T2, · · · ,Tm}, where Tj ⊆ H (there are m talks and Tj is the

set of hours during which the jth talk can be given);
4. an n×m matrix G of nonnegative integers (Gi j is the number of hours (times)

which the ith presenter will give the jth talk).
QUESTION: Does there exist a function

f (i, j,h) : {1, · · · ,n}×{1, · · · ,m}×H→{0,1}

(where f (i, j,h) = 1 if and only if presenter i gives talk j during hour h) such that
(a) f (i, j,h) = 1⇒ h∈ Pi∩Tj (the presenter and talk are both available to be sched-

uled at hour h);



(b) ∑
h∈H

f (i, j,h) = Gi j for all 1≤ i≤ n and 1≤ j ≤ m (the ith presenter was sched-

uled for the jth talk the required number of times);

(c)
n
∑

i=1
f (i, j,h)≤ 1 for all 1≤ j≤m and h∈H (no talk has more than one presenter

at a time);

(d)
m
∑
j=1

f (i, j,h) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more than

one talk simultaneously).

3 Conference scheduling problem

We now consider extensions and modifications of the TTD problem that incorporate require-
ments arising from our application.

3.1 Conference TTD Problem

Although the TTD problem is related to our target problem, it does not capture all of the
decisions and constraints involved. One requirement is that some talks may involve multiple
presenters, each of which may have additional differing scheduling conflicts. In the TTD
model, constraint (c) ensures that each talk is scheduled to exactly one presenter. In the case
where multiple presenters are allowed we most likely wish to add a different constraint: that
for each talk every presenter that can be scheduled is scheduled. For example, if Alice is
giving talks A, B, and C, and Bob is giving talks B, C, and D, all scheduled instances of
B and C should include both Alice and Bob. We call this variant the Conference Timetable
Decision problem (CTTD).

CONFERENCE TIMETABLE DECISION PROBLEM

Same as TTD, but with constraint (c) changed to
(c) (Gi j > 0)∧ (Gi′ j > 0)⇒ f (i, j,h) = f (i′, j,h) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m

and h ∈ H (all presenters that are required to give a talk must be present at all
instances of that talk);

We now show that CTTD is NP-complete via reduction from the Graph k-colorability
problem, the decision problem of determining whether or not a graph admits a k-coloring,
which is well known to be NP-complete [4]. As we will see in the proof, the CTTD problem
is NP-complete even without the inclusion of the availability constraints and even if each
entry Gi j is equal to zero or one.

Proposition 1 CTTD is NP-Complete.

Proof We first note that CTTD is clearly in NP. Given a graph G = (V,E) and a positive
integer k, we will show how to construct an instance of CTTD that is feasible if and only if
G is k-colorable. For simplicity of presentation we assume that G contains no isolated nodes
(coloring of such nodes is trivial). Essentially, a talk is created to correspond to each vertex in
G, each of the k colors corresponds to an hour in which talks can be scheduled and speakers
are created to correspond to the edges in G. More formally, define H = {1,2, · · · ,k} and for
each vertex v j ∈V = {v1,v2, · · · ,v|V |} let Tj = H. For each edge el ∈ E = {e1,e2, · · · ,e|E|}
we let Pl =H. For each el = (vi,v j)∈E, where vi,v j ∈V , we let Ĝli = Ĝl j = 1, and let Ĝlm =



0 for each m 6= i, j. We now have an instance (H,P,T, Ĝ) of CTTD (whose construction was
easily computed in polynomial time).

We now observe that (H,P,T, Ĝ) has a feasible schedule f if and only if G is k-colorable.
Given a feasible schedule f , each vertex va in G is assigned color h, where h is the timeslot
in which talk a is assigned. For any edge el = (vi,v j) ∈ E we note that since a speaker l
was created to give talks i and j they will not be scheduled in the same time slots, and thus
vi,v j are assigned different colors, leading to a valid k-coloring of G. Conversely, given a
k-coloring of G it is easy to construct a feasible schedule f for (H,P,T, Ĝ) using the same
idea. Finally we conclude that CTTD is NP-Complete.

3.2 Basic Conference TTD Problem

Lovelace showed that a relaxed version of TTD (called BCS for “Basic Course Scheduling”)
can be solved in polynomial time using a network flow model [3]. The principal differences
between BCS and TTD are the reduction of many “hard” requirements such as those insist-
ing that presenters give exactly a certain number of talks of a certain type to simply saying
they may give at most the number of talks for which they are willing to give. BCS does
maintain a hard requirement that all presentations must be scheduled, but offers flexibility
in which speaker makes each presentation. We give a formulation of BCS using notation
consistent with our description of the Basic Timetable Decision Problem (BTTD).

BASIC TIMETABLE DECISION PROBLEM

INSTANCE:
1. a finite set H of hours and numbers n and m indicating the number of presenters

and talks, respectively;
2. a collection P = {P1,P2, · · · ,Pn}, where Pi ⊆ H (there are n presenters and Pi is

the set of hours during which the ith presenter is available for presenting);
3. a collection T = {T1,T2, · · · ,Tm}, where Tj ⊆ H (there are m talks and Tj is the

set of hours during which the jth talk can be given);
4. a function L : Z+ → Z+

0 , where L(n) is the maximum number of talks that the
nth presenter can give;

5. a function S : Z+ → Z+
0 , where S(m) is the desired number of instances of the

mth presentation;
6. a function WT P : {1,2, · · · ,n}×{1,2, · · · ,m} → {0,1}, where WT P(i, j) indi-

cates if the ith presenter is Willing To Present the jth talk.
QUESTION: Does there exist a function

f (i, j,h) : {1, · · · ,n}×{1, · · · ,m}×H→{0,1}

(where f (i, j,h) = 1 if and only if presenter i gives talk j during hour h) such that
(a) f (i, j,h) = 1⇒ h∈ Pi∩Tj (the presenter and talk are both available to be sched-

uled at hour h);
(b) ∑

h∈H
f ′( j,h) = S( j) for all 1≤ j ≤ m where f ′( j,h) = 1 ⇐⇒ ∃i with 1≤ i≤ n

such that f (i, j,h) = 1, and 0 otherwise (the jth talk is given the required number
of times);

(c)
m
∑
j=1

f (i, j,h)≤ 1 for all 1≤ i≤ n and h ∈H (there is no more than one presenter

scheduled for each instance of a talk);



(d) f (i, j,h) = 1⇒WT P(i, j) = 1 (only presenters willing to give a talk are sched-
uled for it);

(e)
n
∑
j=1

∑
h∈H

f (i, j,h) ≤ L(i) for all 1 ≤ i ≤ n (the total number of talks that the ith

presenter is scheduled for is at most their maximum number of presentations)

(f)
m
∑
j=1

f (i, j,h) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more than

one talk simultaneously).

Remark 1 BTTD ∈ P [3].

The difference between TTD and CTTD is the ability for presentations to have multiple
presenters, and the requirement that all presenters be scheduled for all instances of a talk.
Likewise, we can formulate a modified version of BTTD that incorporates this new con-
straint which we will call the Basic Conference Timetable Decision problem (BCTTD).

BASIC CONFERENCE TIMETABLE DECISION PROBLEM

Same as BTTD, but with constraint (c) changed to
(c) WT P(i, j) =WT P(i′, j)⇒ f (i, j,h) = f (i′, j,h) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m

and h ∈ H (all presenters that are required to give a talk must be present at all
instances of that talk);

We observe that after this constraint is introduced, we may apply the same reduction
used in Proposition 1 and thus we have the following.

Proposition 2 BCTTD is NP-Complete.

3.3 Extended Conference TTD Problem

We now present a modification to CTTD that introduces room assignment decisions and
room compatibility constraints. The CTTD problem assigns speakers to talks and time slots
but, as in many other applications, we also require that talks are assigned to suitable rooms.
Furthermore, rooms also may only be available during certain times or suitable for certain
talks and this information must be factored into the problem. This leads us to the Extended
Conference Timetable Decision problem (ECTTD).

EXTENDED CONFERENCE TIMETABLE DECISION PROBLEM

INSTANCE: Same as CTTD, but with the additional parameters:
5. a finite set R of rooms;
6. a collection {A1,A2, · · · ,Ar}, where Ak ⊆ H (there are r = |R| rooms and Ak is

the set of hours during which the kth room is available);
7. a collection {S1,S2, · · · ,Sm}, where Sl ⊆ R (there are m talks and Sl is the set of

rooms that the lth presentation may be given in)
QUESTION: Does there exist a function

f (i, j,h,r) : {1, · · · ,n}×{1, · · · ,m}×H×R→{0,1}

(where f (i, j,h,r) = 1 if and only if presenter i gives talk j during hour h in room r)
such that
(a) f (i, j,h,r) = 1⇒ h∈ Pi∩Tj∩Ar∧r ∈ S j (the ith presenter, jth presentation and

room r are all available to be scheduled at hour h and room r is suitable for the
jth presentation);



(b) ∑
r∈R

∑
h∈H

f (i, j,h,r) = Gi j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m (the ith presenter was

scheduled for the jth presentation the required number of times);
(c) Gi j > 0∧Gi′ j > 0⇒ f (i, j,h,r) = f (i′, j,h,r) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m,

h ∈ H, and r ∈ R (all presenters that are required to give a talk must be present
at all instances of that talk);

(d) ∑
r∈R

m
∑
j=1

f (i, j,h,r) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more

than one talk simultaneously);

(e)
m
∑
j=1

f ′( j,h,r)≤ 1 for each h∈H and r∈R where f ′( j,h,r)= 1 ⇐⇒ ∃i with 1≤

i≤ n such that f (i, j,h,r) = 1, and 0 otherwise (room r is scheduled for at most
one talk at hour h).

We also note that since this is a clear generalization of CTTD, and in the class NP, it is also
NP-Complete.

Proposition 3 ECTTD is NP-Complete.

3.4 Preference Conference Optimization Problem

We have examined several different variations of scheduling problems as they relate to con-
ferences; we now offer a final variation that will be the subject of study for the rest of the
paper. In particular we are interested in not only finding a schedule that is feasible with
respect to speaker and room logistics, but one that also minimizes attendee preference con-
flicts. Formally, an attendee preference conflict is a tuple (e, j, j′) where e is an attendee,
j, j′ are two events for which e has indicated an interest to attend, and j, j′ are scheduled
to occur during the same time slot. Namely, given the set of conference attendees and their
preferences for talks they would like to attend, we want to minimize the total number of
times that a given attendee has shown preference for a pair of talks that are scheduled in
the same time period. We call the resulting optimization problem the Preference Conference
Optimization problem (PCO).

PREFERENCE CONFERENCE OPTIMIZATION PROBLEM

INSTANCE: Same as ECTTD, but with the additional parameters:
8. a finite set E = {e1,e2, · · · ,et} of attendees;
9. a t×m 0-1 matrix W (We j indicates if the eth attendee would like to attend the

jth talk).
GOAL: Find a function

f (i, j,h,r) : {1, · · · ,n}×{1, · · · ,m}×H×R→{0,1}

that satisfies all the constraints of the ECTTD problem while minimizing the sum
of the attendee preference conflicts where, as described above, an attendee pref-
erence conflict is any tuple (e, j, j′) such that there exist i, i′,h,r and r′ such that
f (i, j,h,r) = f (i′, j′,h,r′) = 1 where We j = 1 and We j′ = 1.

4 Integer programming models

We will present integer programming models that can solve PCO and ECTTD. The data
used to measure the models comes from a real conference held in 2013, which we shall



refer to as PC2013. PC2013 had 195 presenters giving a total of 253 talks. Figure 1 helps
illustrate the data we worked with: each vertex represents a talk and adjacent vertices share
a common presenter and cannot be scheduled at the same time. By Proposition 1, solving
CTTD is equivalent to asking if this graph admits an h-coloring (where h is the number of
time slots available at the conference).

Fig. 1 Presenter conflicts that must be scheduled around in PC2013

4.1 Model for the Extended Conference Timetable Decision Problem

Before describing the model for the PCO problem, we give an integer programming model
where feasible solutions determine values of functions f which correspond directly to sched-
ules that satisfy the constraints laid out in the ECTTD decision problem. We note that the
size of f , i.e. the number of variables in our model, can be very large when building models
corresponding to our application data.

size of f = # of presenters × # of talks × # of hours × # of rooms

For PC2013, size of f = 193×253×37×15 = 27,421,440. This number of variables could
be problematic computationally, however, we know that many (nearly all) of these variables
will be zero based on information we have at formulation time. For example, if a presenter



i doesn’t give talk j, then f (i, j,h,r) = 0 for all h ∈ H,r ∈ R. Although integer program-
ming solver may automatically fix such variables to zero in the preprocessing phase, we
exclude these variables from the model at the time of construction. We create an index set
F ⊆ {1, · · · ,n}×{1, · · · ,m}×H×R where fi, j,h,r ∈F only if presenter i gives talk j; the
talk j, presenter i and room r are available at hour h; and room r is suitable for the jth talk. In
addition to this condition, we restrict the inclusion of variable indices in F to the intersec-
tion of the available hours of all co-presenters (pairs of presenters that give the same talk),
e.g. if co-presenters i, i′ have availability sets {h2,h3} and {h3,h4} (assuming room and talk
availability is at least {h2,h3,h4}) then only variables with h = h3 for these co-presenters
and talk will be included. In practice, the reduction of our solution space to only F gives a
massive performance gain. For PC2013, this immediately reduced the number of variables
down to 91,514 (a reduction of 99.997%).

The variables indexed by F can be thought of as a sparse representation of the interest-
ing elements of the domain of f . In addition to F we will use the index set G to represent
tuples ( j,h,r) for which talk j can be given by any presenter at hour h in room r, and vari-
ables g j,h,r will indicate whether or not this occurs. We will now describe a formulation that
implements each of the constraints on f in ECTTD.

ECTTD formulation

minimize: 0 (1)

subject to: (2)

∑
h,r:(i, j,h,r)∈F

fi, j,h,r = Gi j for every presenter i and talk j (3)

fi, j,h,r− fi′, j,h,r = 0 for every talk j with co-presenters i, i′ (4)

∑
j,r:(i, j,h,r)∈F

fi, j,h,r ≤ 1 for every presenter i and hour h (5)(
∑

i:(i, j,h,r)∈F
fi, j,h,r

)
−U×g j,h,r ≤ 0 for each g j,h,r ∈ G (6)

∑
j:( j,h,r)∈G

g j,h,r ≤ 1 for each hour h and room r (7)

binary: fi, j,h,r,g j,h,r (8)

The first requirement (a) of ECTTD merely enforces all availability and suitability sets. We
implicitly enforce this in our model by considering only the variables indexed over F . As
such, no specific constraints are needed in our model.

The second requirement (b) ensures that every presenter is scheduled for all of their
talks, which we receive as parameter G to ECTTD where Gi j is the number of times pre-
senter i should give talk j. For each presenter i and talk j, the sum of the times they are
scheduled (over all hours and rooms) should be Gi j; this is constraint (3).

To ensure requirement (c) we force that all co-presenters have the same schedule for
their shared talk (constraint (4)).

Requirements (a)-(c) guarantee that all presenters are scheduled for their talks and that
co-presenters are scheduled together. Requirement (d) ensures that if a presenter has multiple
talks, then these talks are scheduled during different hours. For each presenter i and hour h,
the sum of their schedule variables for their talks in all rooms must be less than or equal to
one (constraint (5)).



The final requirement (e) ensures that room scheduling is exclusive. We would like to
simply iterate over F for a particular pair of hour h and room r, summing all of these
together. If we didn’t allow co-presenters (like TTD) then we could simply make this sum
less than or equal to one. But, for talks with co-presenters this sum varies. To overcome this
we create indicator variables g j,h,r where g j,h,r = 1 whenever talk j is scheduled at hour h
in room r; this is modeled in constraint (6), where U represents a sufficiently large number.
Finally, constraint (6) ensures that no room is multi-booked by checking the sum of g j,h,r
for each pair h,r.

Solving this feasibility problem proved tractable. We solved this formulation with the
open source IP solver CBC on PC2013 with varying numbers of talks pruned out to see how
the model scales. The results are given in Figure 2.

Fig. 2 Run time of ECTTD model
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4.2 Model for the Preference Conference Optimization Problem

We now turn our attention to the Preference Conference Optimization (PCO) problem. PCO
adds an additional layer of complexity to ECTTD by including a matrix of preferences for
attendees with the goal of minimizing the number of conflicts caused by concurrent talks.
Through experimentation we have found that considering these preferences significantly
increases the difficulty of solving our conference scheduling problem. We now present an
integer programming model for PCO.

The PCO model we present builds on our previous ECTTD model. In addition to the G
variables which collapse the four dimensional f function down to three dimensions (talk×
hour× room), all the while considering only those variables for which a feasible schedule is
even possible given the different availability constraints, we will introduce three new classes



of variables for PCO. The first is z which will collapse g to two dimensions (talk× hour).
Next, we will expand z to c which will have a three dimensional range from talk× talk×
hour; it will indicate if two talks j, j′ are given concurrently at hour h. As with previous
models, the corresponding script (e.g. Z for z) will represent the index set of variables that
are possible given availability constraints. The parameter w is constructed from W as a talk×
talk×hour matrix where each entry is the number of attendees who wish to attend both talks
j, j′ for all h when j, j′ can be given based on talk, presenter, and room availability. Formally,
w j, j′,h = |{ek ∈ E : ek has Wk j = 1 and Wk j′ = 1}| for each h where (h, j)∪(h, j′)⊆Z . The
objective function that is minimized in the model is the sum of elements in c.

PCO formulation

minimize: ∑
( j, j′,h)∈C

w j, j′,h× c j, j′,h (9)

subject to: (10)

∑
h,r:(i, j,h,r)∈F

fi, j,h,r = Gi j for every presenter i and talk j (11)

fi, j,h,r− fi′, j,h,r = 0 for every talk j with co-presenters i, i′ (12)

∑
j,r:(i, j,h,r)∈F

fi, j,h,r ≤ 1 for every presenter i and hour h (13)(
∑

i:(i, j,h,r)∈F
fi, j,h,r

)
−U×g j,h,r ≤ 0 for each ( j,h,r) ∈ G (14)

∑
j:( j,h,r)∈G

g j,h,r ≤ 1 for each hour h and room r (15)(
∑

j,h:( j,h,r)∈G
g j,h,r

)
−U× z j,h ≤ 0 for each room r (16)

∑
h:( j,h)∈Z

z j,h = Gi j for each talk j and some presenter i (17)

z j,h + z j′,h− c j, j′,h ≤ 1 for each ( j, j′,h) ∈ C (18)

binary: fi, j,h,r, g j,h,r, z j,h, c j, j′,h (19)

Constraints (11) - (15) are the same as in our model for ECTTD. Constraint (16) begins to
build the z variables which will be 0-1 indicators of talk j being given at hour h via the same
boolean cast mechanism described previously by collapsing the room entries for j,h in g.
To ensure that only the correct number of zs are set to one, constraint (17) sums all hours h
for each talk j and sets it equal to the number of times that talk j was set to be given in the
problem instance (the matrix G). It is of note that we pick any presenter i’s entry in G for talk
j; although it is possible that a co-presenter i′ may have a different value for Gi′ j requirement
(c) of PCO explicitly forbids this since it would be impossible for all co-presenters to be at
all instances of a talk if they had different entries for their shared talk j, thus we can pick
any presenter i.

The z variables will now be used to generate c, which indicates if a pair of talks j, j′

are being given concurrently at hour h. Specifically, constraint (18) , enforces that z j,h =
1 and z j′,h = 1 =⇒ c j, j′,h = 1. The objective (9) of the model is to minimize the sum of
attendee preference conflicts. Each variable c j, j′,h appears with coefficient of w j, j′,h, which is
the number of attendee preference conflicts generated by talks j and j′ being scheduled in the



same time period. Note that if the coefficient w j, j′,h is nonzero, then the minimization nature
of the problem will force the corresponding c j, j′,h to take zero value whenever possible.

To measure the efficiency of our model we tested it on our sample set PC2013. This
data set included information about talks, speakers and attendance, but did not include at-
tendee preferences (as they were not solicited that year), however we may use this data to
generate reasonable instances by taking the historical attendance data as a basis for generat-
ing hypothetical attendee preferences. Attendance figures we recorded for each talk given at
PC2013; a distribution of the attendance per talk is shown in Figure 3. The sum of all atten-

Fig. 3 Distribution of attendance at PC2013
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dance counts was 4101 [6] for around 1000 unique attendees. For the purposes of testing our

model created a W such that
n
∑

i=0
Wi j was equal to the attendance count for that talk j, i.e. we

created an indicated attendance preference for each individual talk attendance at PC2013.
Since individual attendee attendance wasn’t tracked (only totals were) we took some lib-
erties in distributing the preference responses across the attendees in our model. We first
randomly spread the preference responses over the attendees using a uniform distribution;
that is, if talk j had an attendance of 24 in PC2013 then 24 attendees were randomly chosen
to express a preference for attending this talk. We solved our model with commercial solver
Gurobi which returned a solution with an objective value of 0 after 64 seconds, i.e. a sched-
ule with absolutely no attendee conflicts. All computations were run on a machine with 4
12-core Intel Xeon E5-2695 CPUs running at 2.4 GHz with 96 GB of RAM

After finding a non-conflicting schedule for uniformly distributed random attendees that
followed the attendance counts in PC2013 we turned our attention to how the solver would
react when the random attendees were not distributed uniformly. Our intuition was that, like
the actual attendance figures, the distribution of attendance per attendee would not be evenly
spaced out; there would be some attendees who went to many talks, and some who went to



only a few. We chose a normal distribution with µ = 500,σ = 100. For each attendance in the
PC2013 distribution (Figure 3) a random integer from the normal distribution was chosen.
Since µ = 500 those attendees with index around 500 were much more likely to be chosen
to indicate a preference to the talk then those with indices 50 or 950, which implemented
our intuition that a small percentage of attendees will indicate attendance preferences for
many talks while the bulk of those remaining will indicate preferences for relatively few.
In addition, we added a check to ensure that no attendee was selected to attend more talks
than were hours available; such a scenario would automatically preclude a zero objective
value. Even with an extremely powerful computer to run our model on and a state-of-the-art
commercial solver we were unable to solve this instance after 24 hours. To help understand
this phenomenon we created a half-sized problem (half as many talks and hours) and ran the
model with decreasing values of σ and found that the solving time exploded exponentially
as σ decreased; the average running time for σ = 200 was 22 seconds but increased to
22,683 seconds for σ = 100.

4.2.1 Performance considerations

After including attendee preferences in our test models, the integer programming models
became significantly more difficult to solve. One possible cause of this is symmetry present
in the models, a property that often leads to increased solution time [7]. An integer program-
ming model is said to be symmetric if some of its variables can be permuted (nontrivially)
without changing the structure of the problem [8]. Our model exhibits high amounts of sym-
metry in relation to the scheduling of talks in rooms. If two rooms have the same availability
and suitability set then permuting talk assignments among them in each hour produces no
discernible change to the objective. It may be, however, that the solver will choose to branch
early on in its branch-and-bound tree on these room assignments, leading to lots of unneces-
sary computation. In general it is difficult for the solver to detect that such variables “really”
represent the same thing, although there are several mechanisms for determining and avoid-
ing symmetry in solvers [9]. However, it is easy for us to identify this symmetry and avoid
it.

Two rooms will be said to be symmetric if they have the same suitability and availability
sets, i.e. for rooms Rα and Rβ we have that Rα and Rβ are symmetric if and only if

Aα = Aβ and

{i | Rα ∈ Si for all 1≤ i≤ m}= {i | Rβ ∈ Si for all 1≤ i≤ m}.

To break the symmetry we create room classes which will represent several rooms with
the same attributes. First, we make a new room set R′ = {r′ = {r1,r2, · · · ,rp} ⊆ R | all r ∈
r′ are symmetric with each other}. The corresponding new availability set A′ has simply the
common availability set for each new r′ ∈ R′. For the new suitability set S′ we replace each
instance of r with the room class r′ that r is a member of. When we solve our model talks
will be booked to room classes, avoiding the symmetry that arises by having to consider
two essentially “equal” rooms separately. When our model is solved we will have bookings
in room classes, and we can arbitrarily assign the talk to any room in that class. We must
make only one adjustment to our model: Constraint (15) in the PCO model ensures that each
room has only one talk booked in it per hour. For our room classes we wish to relax this,
requiring only that the number of bookings be at most the number of rooms in the class; this
way, when we assign actual rooms from the solved model we can match talks to rooms in a



one-to-one way. Formally, we will change constraint (15) to

∑
j∈Gh,r

g j,h,r ≤ |r|. (20)

It is easy to see that this model degenerates to our regular PCO model when no rooms
are symmetric; in this case each room class would contain only one room. In practice the
removal of the room symmetries increased performance by roughly a factor of 5x for our
solver on PC2013, which contained only three room classes but had fourteen rooms (see
Figure 4).

The next step we took to improve performance was to dualize one class of constraints.
In this technique, these requirements are moved from being hard constraints in the model,
to appearing in the objective function with a sufficiently large penalty to ensure their satis-
faction. We chose to dualize constraint (d), namely that no presenter is scheduled for more
than one talk per hour. Intuitively, this seemed like a promising adjustment because these
constraints are similar in structure to the attendee preference conflicts that are minimized in
the objective function. We first created 0-1 indicator variables di,h = 1 ⇐⇒ presenter i is
doubly (or more) booked at hour h by changing (13) (which enforced (d)) to ∑

j,r∈Fi,h

fi, j,h,r

−U×di,h ≤ 1. (21)

Where U is a sufficiently large number. The left hand side of (21) is the number of times
that presenter i is scheduled at hour h, and di,h may be 0 or 1 if this sum is less than 2, but
must be 1 if the sum is 2 or greater. We then changed the objective (9) to

minimize: ∑
( j, j′,h)∈C

w j, j′,h× c j, j′,h + ∑
(i,h)∈D

U×di,h. (22)

Our new objective places a penalty of U on presenters being multiply booked. We should
choose U sufficiently large so d is identically zero, otherwise the model can be resolved
with a larger value of U . In our experiments the dualized constraints were always satisfied
after solving the model. In practice, dualizing PCO led to moderate performance increases
of roughly 75% faster.

For a summary of solution times comparing the original model with the improved mod-
els discussed in this subsection see Figure 4. The three models compared are: the Standard
model, which corresponds to the PCO formulation given by (9)-(15); the Symmetry model,
which incorporates the symmetry breaking reformulation described above; and finally the
Dualized model, which incorporates both the symmetry breaking reformulation, and the du-
alization of constraint (d) as described above. The graph plots the average running time for
solving 10 randomly generated instances for values of σ between 100 and 400 with incre-
ments of 10. The table shows the same information, only listing times for instances where
σ is a multiple of 50. All times are listed in seconds. We also note that it turned out that for
the generated instances solved in these experiments, the optimal solutions had an objective
value of zero.

5 Conclusion

Conference scheduling represents an important class of timetabling problems. This paper
studies a conference scheduling problem where attendee preference conflicts are minimized,



Fig. 4 Run time of PCO model with decreasing σ
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(σ ) Standard Symmetry Dualized
400 5.4 0.8 0.4
350 10.0 1.2 0.4
300 6.8 3.0 0.8
250 12.8 6.0 2.2
200 22.8 10.2 2.0
150 196.2 156.8 45.2
100 22683.7 4179.2 3282.6

subject to a collection of hard constraints. We have demonstrated integer programming to be
an effective solution technique, especially after incorporating symmetry breaking and other
improvements.
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