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About Me

 Jeffrey Quesnelle, 6 year Penguicon attendee.

 Member in good standing of the U.B.S Delirium (Detroit Barfleet chapter –

hope you enjoyed our parties!)

 Previous Penguicon talks: “How I Lost 100 Pounds Without Being Miserable” 

and “Are the Reals Really Real? A Skeptical Look at Infinity”.

 B.S. of Computer Science and B.A of Mathematics from Oakland University.

 M.S / Ph.D. Computer Science (not sure where yet though ;) )

 Real life: Software engineer at automotive supplier.

 Website: http://jeffq.com

 Twitter: @jquesnelle

http://jeffq.com/


What’s this all about?

 In 2013 some Penguicon volunteers decided to try and create a website to 

streamline the process of submitting and processing events to the con.

 On this website you could submit talks, get feedback about your 

submission, give it tags, request resources, etc.

 Lots of cool ideas, introduced me to how Ops works.

 Got the idea, what if we set our sights bigger? Instead of just collecting the 

data, could we help with the actual scheduling of the con?

 It turns out this is a Hard (with a capital H) thing to do

 This talk will explain what I mean by that!

 I spent a full semester working exclusively on this research (yikes)



Scheduling a con

 You probably know this but the logistics of pulling of an event like 

Penguicon can be extremely complicated!

 Dealing with the hotel, attendee registration, vendors, etc.

 Thankfully, Penguicon is blessed with a great group of contributors giving a 

wide range of talks, panels, and other events

 P.S. If you play Hearthstone, come to the Fireside Gathering I’m organizing at 3 

today :D

 Even after events are submitted, lots of considerations

 What time should talks run?

 What room should they go in?

 Make sure presenters aren’t multiply booked!

 Multi-presenter talks get even more hairy



What we did

 Split our consideration into two problems. The first mirrored the prototypical 

convention scheduling problem:

 Given presenters and a list of the talks they give (possibly with other presenters), 

and given the availability of rooms and presenters, find a schedule for a 

convention where no presenter is multiply booked

 The second was more of a what-if problem:

 Suppose we let everyone “RSVP” for events on the site before hand. Could we 

also generate a schedule that minimized the number of “conflicts”?

 A conflict exists when you RSVP for two events but they end up being held at the same 
time



The classic convention scheduling 

problem
Or, why I ended up at 12pm Sunday



Problem definition

 GIVEN:

 A set H of hours

 A set of P presenters, each of which are available for a subset of H

 A set of T talks, each of which can be scheduled at a subset of H

 A set of R rooms, which are available for a subset of H and are suitable for a 

subset of T

 A list G of how many times each presenter must give each talk

 QUESTION:

 Can we find a schedule (an assignment from of talks to rooms and hours) so that 

all presenters are present for all their talks, and no presenter has to be in two 

places at once?



A detour into computer science

 So what exactly did we study about this problem?

 One of the main branches of computer science is something called 

computational complexity

 Computational complexity isn’t about studying how to solve a problem, but 

how “hard” this problem is to solve

 Why do we care about this?

 Computers are getting faster and faster every year

 So, we’re interested in how our problem scales

 If the problem is twice as big, does it take twice as long to finish? Four times as 

long? A million times as long?



An introduction to complexity classes

 “Hard” problems are those that get MUCH more difficult to solve as their 
size gets bigger

 Here’s some intuition:

 Find the oldest person at the convention

 Pretty simply, just go to everyone and ask their age, remembering who was the oldest 
person you’ve met up to that point. If the number of people at the convention double, 
you have to go to twice as many people

 Find a group of people in the convention whose age adds up to 179

 Even after you know everyone’s age, you have to try every different combination of 
people to see if their age adds up to 179. As you add more people, there are LOTS 
more combinations you need to try

 Given a game of chess, determine the optimal move

 You have to consider every possible move your opponent could take on their next turn, 
which involves evaluating every possible movie you could take on the turn after that, 
etc. etc.



Complexity classes, continued

 Computer scientists broadly group problems into “classes”. The three 

previous problems are each members of increasingly more difficult classes

 The first problem, finding the oldest person, illustrates the class P

 Problems in P are those that can be solved in polynomial amount of work. For 

example, if there are x number of people maybe it takes x2 amount of work

 The second problem, finding a group of people that add up to an age, 

illustrates class NP

 Problems in NP are those that can be verified in polynomial time. There are 2x

number of possible combinations. But, if I say “these five people add up to 179”, 

you can quickly verify that the solution is correct

 The last problem, evaluating chess positions, illustrates the class EXPTIME

 Problems in EXPTIME take an exponential amount of work, and even given a 
solution you can’t verify it’s correct without performing an exponential amount of 

work too



P vs NP
 The difference between solving a problem in polynomial time and 

exponential time is huge

n n3 23n

0 0 1

1 1 8

2 8 64

3 27 512

4 64 4096

5 125 32 768

6 216 262 144

7 343 2 097 152

8 512 16 777 216

9 729 134 217 728

10 1000 1 073 741 824



P vs NP, continued

 Why do P and NP matter? Well, NP has the nice property that even if solving a 

problem is very hard, verifying a solution is correct is easy.

 This is the basis for all cryptography that protects everything on the web (bank 

transactions, etc.)

 It’s easy to prove you have the correct decryption key, but very hard to find that 

decryption key. The most popular encryption method is known as RSA, which relies 

on the fact that factoring large prime numbers is hard, but proving you know the 

factors is easy (simply multiply them together)

 But, if we know we can verify the solution problem quickly, does that mean 

there must be an algorithm to solve it quickly and that we just haven’t found it 

yet?

 This is known as the P = NP problem, and is the most important open question in 

computer science

 A proof either way currently has a bounty of $1,000,000 from the Clay Mathematics Institute





Reducibility and NP-Completeness

 When we look at a problem, it’s good to know if we can even solve it at all. 
If the problem is firmly in NP, then it essentially will be impossible to solve as it 
gets bigger

 How can we prove that an algorithm has NO quick solution? Pretty hard to 
prove a negative

 This where something called NP-Completeness comes in

 NP-Complete are the “hardest” problems in NP, meaning that if we can solve 
these problems quickly, we could solve every problem in NP quickly

 We use a technique called reducibility

 If we can convert our problem to a problem that is already known to be NP-
Complete, then we know that it too is at least as hard as every other NP problem

 There are thousands of known NP-Complete problems, and if we could 
solve ANY of them quickly, we could solve them all

 The fact that we haven’t come up with even one quick solution for any of these 
problems is why most computer scientists believe P ≠ NP



Back to our problem

 Major original result of the paper: finding a schedule for a convention is NP-

Complete

 This means that it’s very likely no quick algorithm exists for solving it, and that the 

problem becomes impossible as the convention gets bigger

 How did we show this?

 Used a reduction from graph colorability, which is known to be NP-Complete

 Graph colorability asks, given a set of circles and lines between them along with a set of 
colors, can we color each circle so that no two circles that are connected share the 
same color?

 Closely related to coloring a map of the US so no two adjacent states have the same 
color



Graph colorability
Can we color the circles with these three colors 

so that no connecting circles have the same color?



Graph colorability
Can we color the circles with these three colors 

so that no connecting circles have the same color?



Reduction from graph colorability

 For each circle, we create a “talk”

 For each color, we create an “hour” that talks can be scheduled in

 For each connection between circles, we create a “presenter”

 We now find a solution for this convention. Since no presenters (represented 

by connections) can be scheduled at the same hour (color), no talks 

(circles) that have common presenters will be assigned to same hour 

(color)

 So, any solution for this convention is a valid solution for the graph coloring 

problem, and vice versa any convention can be converted to a graph 

coloring problem whose solution is also a valid schedule

 Therefore, graph colorability is reducible to our convention scheduling problem, 

and since graph colorability is NP-Complete, so is our convention problem!



What does this tell us?

 Since our scheduling problem is NP-Complete, it’s very unlikely (unless P = 

NP) that there exists an algorithm that can quickly give us an optimal 

schedule

 There’s a second result too: we don’t have to come up with an algorithm to 

solve our particular problem! We can simply convert it to graph colorability, 

and then use any of the many algorithms already known to solve that, and 

convert the result back!

 One of the best studied NP-Complete problems is known as 3-SAT, and there 

exists dozens of publicly available solvers that can solve 3-SAT somewhat fast for 

moderately sized problems

 Reducibility means everyone can focus on solving one problem, and the 

results can be applied to many different problems!



The RSVP problem



The RSVP problem

 We also investigated a more complex problem: what if we let everyone 

RSVP to events before the con? Can we create a schedule that also 

minimizes the number of conflicts

 Immediately we can see this is even harder! Among all possible valid 

schedules we have to find the one that has the least number of conflicts 

with (possibly thousands of) RSVPs!

 Rather than try to solve the problem ourselves, we reduced the problem to 

another type to be able to study it better

 Specifically we used something called linear programming



Linear programming

 Linear programming involves reducing your problem to a series of linear 

equations.

 We can then tell a computer to either “maximize” an equation or 

“minimize” it, and it will attempt to find assignments of the variables that will 

do this

 Here’s an example of reducing a problem to linear programming



Linear programming example

(from purplemath.com)

 A calculator company produces a scientific calculator and a graphing 

calculator. Long-term projections indicate an expected demand of at least 

100 scientific and 80 graphing calculators each day. Because of limitations 

on production capacity, no more than 200 scientific and 170 graphing 

calculators can be made daily. To satisfy a shipping contract, a total of at 

least 200 calculators much be shipped each day.

 If each scientific calculator sold results in a $2 loss, but each graphing 

calculator produces a $5 profit, how many of each type should be made 

daily to maximize net profits?



Linear programming example, 2

 x: number of scientific calculators

 y: number of graphing calculators

 100 < x < 200

 80 < y < 170

 x + y > 200

 Maximize –2x + 5y



Linear programming example, 2

The gray region is the feasible region, all valid solutions are in here.

The best solution is at (100,170): -2*100 + 5*170 = 650



RSVP model

 We created an integer (linear programming with only integers) 

programming model that incorporated all of the constraints of a valid 

schedule

 We then minimized the number of the conflicts created by this schedule 

and let a commercial LP solver go to work

 This is the same method that airlines use to schedule planes, the NFL uses to 

create its schedule, etc.

 To test the model we used Penguicon 2013 data



Penguicon 2013
 193 presenters, 253 talks, 37 hours available for scheduling, and 15 rooms



Results

 Based on attendance to talks, we randomly assigned RSVPs to 1000 

(estimated con attendance) attendees. So if a talk had 30 people attend 

it, we randomly had 30 attendees RSVP to it

 All computations were run on a machine with 4 12-core (48 total core) Intel 

Xeon E5-2695 CPUs running at 2.4 GHz each with 96 GB of RAM

 Able to find a schedule with NO RSVP conflicts in 64 seconds!

 This was using the (extremely expensive) commercial solver Gurobi, whose 

company was nice enough to donate a free academic license. Open source 

solvers were much slower



Results, 2

 What if people weren’t randomly assigned? What if we changed the 

model so some people RSVPed to many events (the “hardcores”) while lots 

of people only RSVPed to only a few

 Having these “hardcore” fans made the model dramatically harder to 

solve. Had to quit computation after 16+ hours

 This follows our intuition, the more people there are with lots of RSVPs the more 

likely that a valid schedule will result in some of their talks being booked at the 

same time

 The solver must be sure there is absolutely NO schedule with 0 conflicts before it 

tries to find one with 1 conflict, etc.

 We used several advanced techniques to make the model faster, including 

newly discovered methods known as symmetry breaking and dualization



Conclusion

 Finding schedules for conventions is hard, although for moderately sized 

problems (such as Penguicon) solutions are still in the realm of feasibility on 

high end modern hardware

 Adding the ability to RSVP to events dramatically increases the complexity 

of the problem

 Depending on the distribution of RSVPs amongst the attendees the 

problem can either be feasible, or completely hopeless, but there do exist 

advanced techniques to increase the speed, which leads to most realistic 

scenarios proving solvable

 Math is fun!



Questions?


