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Abstract

This paper describes a conference scheduling problem where, at the time of registration, participants
RSVP to events which they would like to attend. Based upon these preferences, an assignment of events
to rooms and time slots should be determined that minimizes the number of RSVP conflicts and satisfies
a number of hard constraints. We show that our problem, and several variants of it, are NP-hard. An
integer programming model is developed to solve the problem and a computational study of this model
is performed on instances generated from real data. Improvements to the model, including a symmetry
breaking reformulation and a dualization of some hard constraints, are shown to significantly improve
solution times, making the problem tractable for the desired real world application.

1 Introduction

This project was motivated by the problem of scheduling PenguiCon [5], a conference organized by the
open-source community in Michigan. The conference typically includes approximately 250 events such as
lectures, demonstrations and panel discussions, all of which must be scheduled into rooms and time slots.
Many of the events involve multiple presenters/panelists, and many presenters participate in more than one
event; it is a hard constraint that no speaker can be multi-booked during a given time period. Furthermore,
the registration website will give conference participants the ability to “RSVP” to events before the schedule
is generated, giving the extra complication of trying to generate the schedule based on these RSVPs that
minimizes conflicts amongst presentations that attendees had previously indicated a common interest. Our
problem is related to previously studied conference and class scheduling problems but includes what we
believe is a novel and difficult combination of constraints and objectives. The goal of this paper is to model
our problem, relate it to previous work, and implement solution methods that can be deployed to schedule
the PenguiCon conference in practice.

In Section 2 we discuss some related work. In Section 3 we formally describe our problem and related it
to previous work, we also show that our scheduling problem, and some variants, are all NP-hard. Section 4
describes an integer programming model for the problem. Various improvements to the model are also
described and evaluated computationally. Section 5 provides concluding remarks.

2 Background and related work

One of the oldest scheduling problems that has been studied is the timetable design problem (TTD). Given a
set of time slots, a set of teachers and their available teaching hours, and a matrix describing which courses
each teacher is required to teach, the TTD problem is the problem of determining if there exists a schedule
that satisfies the constraints. TTD was shown to be NP-Complete in 1976 via reduction from 3-SAT [1].
However it is notable that certain variants of the TTD problem are know to be polynomial time solvable.
For example, if each teacher is only available for up to two hours, or each teacher is able to teach any class,
then the problem is solvable in polynomial time [2].

The basic TTD model often doesn’t map well onto several common problems such as scheduling courses
for a university. Specifically, the requirement that a teacher must teach certain classes may be relaxed to
describing those classes they are willing to teach. This is know as the Basic Course Scheduling problem
(BCS); it was shown to be solvable in polynomial time by Lovelace [3]. Extensions of the BCS, for example
including the requirement that courses are assigned to rooms, results again in an NP-hard problem.
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The scheduling problem considered in this paper more closely resembles the TTD problem, before intro-
ducing it we will give a precise formulation of the TTD. Here we denote the decision variables as a function
f , which gives the assignment of presenters to talks and hours. We henceforth refer to the courses, or events
as talks.

Timetable Decision Problem

INSTANCE:

1. a finite set H of hours and numbers n and m indicating the number of presenters and talks,
respectively;

2. a collection P = {P1, P2, · · · , Pn}, where Pi ⊆ H (there are n presenters and Pi is the set
of hours during which the ith presenter is available for presenting);

3. a collection T = {T1, T2, · · · , Tm}, where Tj ⊆ H (there are m talks and Tj is the set of
hours during which the jth talk can be given);

4. an n ×m matrix G of nonnegative integers (Gij is the number of hours (times) which the
ith presenter will give the jth talk).

QUESTION: Does there exist a function

f(i, j, h) : {1, · · · , n} × {1, · · · ,m} ×H → {0, 1}

(where f(i, j, h) = 1 if and only if presenter i gives talk j during hour h) such that

(a) f(i, j, h) = 1 ⇒ h ∈ Pi ∩ Tj (the presenter and talk are both available to be scheduled at
hour h);

(b)
∑
h∈H

f(i, j, h) = Gij for all 1 ≤ i ≤ n and 1 ≤ j ≤ m (the ith presenter was scheduled for

the jth talk the required number of times);

(c)
n∑
i=1

f(i, j, h) ≤ 1 for all 1 ≤ j ≤ m and h ∈ H (no talk has more than one presenter at a

time);

(d)
m∑
j=1

f(i, j, h) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more than one talk

simultaneously).

3 Conference scheduling problem

We now consider extensions and modifications of the TTD problem that incorporate requirements arising
from our application.

3.1 Conference TTD Problem

Although the TTD problem is related to our target problem, it does not capture all of the decisions and
constraints involved. One requirement is that some talks may involve multiple presenters, each of which
may have additional differing scheduling conflicts. In the TTD model constraint (c) ensures that each talk
is scheduled to exactly one presenter. In the case where multiple presenters are allowed we most likely wish
to add a different constraint: that for each talk every presenter that can be scheduled is scheduled. For
example, if Alice is giving talks A, B, and C, and Bob is giving talks B, C, and D, all scheduled instances
of B and C should include both Alice and Bob. We call this variant the Conference Timetable Decision
problem (CTTD).

Conference Timetable Decision Problem

Same as TTD, but with constraint (c) changed to
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(c) (Gij > 0) ∧ (Gi′j > 0) ⇒ f(i, j, h) = f(i′, j, h) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m and h ∈ H
(all presenters that are required to give a talk must be present at all instances of that talk);

We now show that CTTD is NP-complete via reduction from the Graph k-colorability problem, the
decision problem of determining whether a graph admits a k-coloring, which is well known to be NP-complete
[4].

Proposition 3.1. CTTD is NP-Complete.

Proof. We first note that CTTD is clearly in NP. Given a graph G = (V,E) and a positive integer k, we will
show how to construct an instance of CTTD that is feasible if and only if G is k-colorable. Essentially, a talk
is created to correspond to each vertex in G, each of the k colors corresponds to an hour in which talks can be
scheduled and speakers are created to correspond to the edges in G. More formally, define H = {1, 2, · · · , k}
and for each vertex vj ∈ V = {v1, v2, · · · , v|V |} let Tj = H. For each edge el ∈ E = {e1, e2, · · · , e|E|} we let

Pl = H. For each el = (vi, vj) ∈ E, where vi, vj ∈ V , we let Ĝli = Ĝlj = 1, and let Ĝlk = 0 for other values

of k. Finally, for each node vi ∈ V with degree zero in G, we create an additional speaker l with Ĝli = 1
and Ĝlk = 0 for other values of k, this is simply to ensure that each talk has a speaker and will be assigned
a time slot in a feasible schedule. We now have an instance (H,P, T, Ĝ) of CTTD (whose construction was
easily computed in polynomial time).

We now observe that (H,P, T, Ĝ) has a feasible schedule f if and only if G is k-colorable. Given a feasible
schedule f , each vertex vk in G is assigned color h, where h is the timeslot in which talk k is assigned. For
any edge el = (vi, vj) ∈ E we note that since a speaker l was created to give talks i and j they will not be
scheduled in the same time slots, and thus vi, vj are assigned different colors, leading to a valid k-coloring

of G. Conversely, given a k-coloring of G it is easy to construct a feasible schedule f for (H,P, T, Ĝ) using
the same idea. Finally we conclude that CTTD is NP-Complete.

3.2 Basic Conference TTD Problem

Lovelace showed that a relaxed version of TTD (called BCS for “Basic Course Scheduling”) can be solved
in polynomial time using a network flow model [3]. The principal differences between BCS and TTD are
the reduction of many “hard” requirements such as those insisting that a presenter give exactly a certain
number of talks of a certain type to simply saying they may give at most the number of talks for which they
are willing to give. BCS does maintain a hard requirement that all presentations must be scheduled, but
offers flexibility in which speaker makes each presentation. We give a formulation of BCS using notation
consistent with our description of the Basic Timetable Decision Problem (BTTD).

Basic Timetable Decision Problem

INSTANCE:

1. a finite set H of hours and numbers n and m indicating the number of presenters and talks,
respectively;

2. a collection P = {P1, P2, · · · , Pn}, where Pi ⊆ H (there are n presenters and Pi is the set
of hours during which the ith presenter is available for presenting);

3. a collection T = {T1, T2, · · · , Tm}, where Tj ⊆ H (there are m talks and Tj is the set of
hours during which the jth talk can be given);

4. a function L : Z+ → Z+
0 , where L(n) is the maximum number of talks that the nth presenter

can give;

5. a function S : Z+ → Z+
0 , where S(m) is the desired number of instances of the mth

presentation;

6. a function WTP : {1, 2, · · · , n} × {1, 2, · · · ,m} → {0, 1}, where WTP (i, j) indicates if the
ith presenter is Willing To Present the jth talk.
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QUESTION: Does there exist a function

f(i, j, h) : {1, · · · , n} × {1, · · · ,m} ×H → {0, 1}

(where f(i, j, h) = 1 if and only if presenter i gives talk j during hour h) such that

(a) f(i, j, h) = 1 ⇒ h ∈ Pi ∩ Tj (the presenter and talk are both available to be scheduled at
hour h);

(b)
∑
h∈H

f ′(j, h) = S(j) for all 1 ≤ j ≤ m where f ′(j, h) = 1 ⇐⇒ ∃i with 1 ≤ i ≤ n such that

f(i, j, h) = 1, and 0 otherwise (the jth talk is given the required number of times);

(c)
m∑
j=1

f(i, j, h) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (there is no more than one presenter scheduled

for each instance of a talk);

(d) f(i, j, h) = 1⇒WTP (i, j) = 1 (only presenters willing to give a talk are scheduled for it);

(e)
n∑
j=1

∑
h∈H

f(i, j, h) ≤ L(i) for all 1 ≤ i ≤ n (the total number of talks that the ith presenter is

scheduled for is at most their maximum number of presentations)

(f)
m∑
j=1

f(i, j, h) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more than one talk

simultaneously).

Remark 3.2. BTTD ∈ P [3].

The difference between TTD and CTTD is the ability for presentations to have multiple presenters, and the
requirement that all presenters be scheduled for all instances of a talk. Likewise, we can formulate a modified
version of BTTD that incorporates this new constraint which we will call the Basic Conference Timetable
Decision problem (BCTTD).

Basic Conference Timetable Decision Problem

Same as BTTD, but with constraint (c) changed to

(c) WTP (i, j) = WTP (i′, j)⇒ f(i, j, h) = f(i′, j, h) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m and h ∈ H
(all presenters that are required to give a talk must be present at all instances of that talk);

We observe that after this constraint is introduced, we may apply the same reduction used in Proposi-
tion 3.1 and thus we have the following.

Proposition 3.3. BCTTD is NP-Complete.

3.3 Extended Conference TTD Problem

We now present a modification to CTTD that introduces room assignment decisions and room compatibility
constraints. The CTTD problem assigns speakers to talks and time slots but, as in many other applications,
we also require that talks are assigned to suitable rooms. Furthermore, rooms also may only be available
during certain times or suitable for certain talks and this information must be factored into the problem.
This leads us to the Extended Conference Timetable Decision problem (ECTTD).

Extended Conference Timetable Decision Problem

INSTANCE: Same as CTTD, but with the additional parameters:

5. a finite set R of rooms;

6. a collection {A1, A2, · · · , Ar}, where Ak ⊆ H (there are r = |R| rooms and Ak is the set of
hours during which the kth room is available);

7. a collection {S1, S2, · · · , Sm}, where Sl ⊆ R (there are m talks and Sm is the set of rooms
that the lth presentation may be given in)
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QUESTION: Does there exist a function

f(i, j, h, r) : {1, · · · , n} × {1, · · · ,m} ×H ×R→ {0, 1}

(where f(i, j, h, r) = 1 if and only if presenter i gives talk j during hour h in room r) such that

(a) f(i, j, h, r) = 1⇒ h ∈ Pi ∩ Tj ∩Ar ∧ r ∈ Sj (the ith presenter, jth presentation and room r
are all available to be scheduled at hour h and room r is suitable for the jth presentation);

(b)
∑
r∈R

∑
h∈H

f(i, j, h, r) = Gij for all 1 ≤ i ≤ n and 1 ≤ j ≤ m (the ith presenter was scheduled

for the jth presentation the required number of times);

(c) Gij > 0 ∧Gi′j > 0⇒ f(i, j, h, r) = f(i′, j, h, r) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m, h ∈ H, and
r ∈ R (all presenters that are required to give a talk must be present at all instances of that
talk);

(d)
∑
r∈R

m∑
j=1

f(i, j, h, r) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more than one

talk simultaneously);

(e)
m∑
j=1

f ′(j, h, r) ≤ 1 for each h ∈ H and r ∈ R where f ′(j, h, r) = 1 ⇐⇒ ∃i with 1 ≤ i ≤ n

such that f(i, j, h, r) = 1, and 0 otherwise (room r is scheduled for at most one talk at hour
h).

We also note that since this is a clear generalization of CTTD, and in the class NP, it is also NP-Complete.

Proposition 3.4. ECTTD is NP-Complete.

3.4 Preference Conference Optimization Problem

We have examined several different variations of scheduling problems as they relate to conferences; we now
offer a final variation that will be the subject of study for the rest of the paper. In particular we are interested
in not only finding a schedule that is feasible with respect to speaker and room logistics, but one that also
minimizes “RSVP conflicts” to conference attendees. Namely, given the set of conference attendees and their
preferences for talks they would like to attend, we want to minimize the total number of times that a given
attendee has shown preference for a pair of talks that are scheduled in the same time period. We call the
resulting optimization problem the Preference Conference Optimization problem (PCO).

Preference Conference Optimization Problem

INSTANCE: Same as ECTTD, but with the additional parameters:

8. a finite set E = {e1, e2, · · · , et} of attendees;

9. a t×m 0-1 matrix W (Wej indicates if the eth attendee would like to attend the jth talk).

GOAL: Find a function

f(i, j, h, r) : {1, · · · , n} × {1, · · · ,m} ×H ×R→ {0, 1}

that satisfies all the constraints of the ECTTD problem while minimizing the sum of the RSVP
conflicts, where we define an RSVP conflict to be any tuple (e, j, j′) such that there exist i, i′, h, r
and r′ such that f(i, j, h, r) = f(i′, j′, h, r′) = 1 where Wej = 1 and Wej′ = 1.

4 Integer programming models

We will present integer programming models that can solve PCO and ECTTD. The data used to measure
the models comes from a real conference held in 2013, which we shall refer to as PC2013. PC2013 had
195 presenters giving a total of 253 talks. Figure 1 helps illustrate the data we worked with: each vertex
represents a talk and adjacent vertices share a common presenter and cannot be scheduled at the same time.
By Proposition 3.1, solving to CTTD is equivalent to asking if this graph admits an h-color (for some h, the
number of timeslots available at the conference).
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Figure 1: Presenter conflicts that must be scheduled around in PC2013

4.1 Model for the Extended Conference Timetable Decision Problem

Before describing the model for the PCO problem, we give an integer programming model where feasible
solutions determine values of functions f which correspond directly to schedules that satisfy the constraints
laid out in the ECTTD decision problem. We note that the size of f , i.e. the number of variables in our
model, can be very large when building models corresponding to our application data.

size of f = # of presenters × # of talks × # of hours × # of rooms

For PC2013, size of f = 193 × 253 × 37 × 15 = 27,421,440. This number of variables could be problematic
computationally, however, we know that many (nearly all) of these variables will be zero based on information
we have at formulation time. For example, if a presenter i doesn’t give talk j, then f(i, j, h, r) = 0 for all
h ∈ H, r ∈ R. Although integer programming solver may automatically fix such variables to zero in the
preprocessing phase, we exclude these variables from the model at the time of construction. We create an
index set F ⊆ {1, · · · , n} × {1, · · · ,m} ×H × R where fi,j,h,r ∈ F only if presenter i gives talk j, the talk
j, presenter i and room r are available at hour h, and room r is suitable for the jth talk. In addition to
this condition, we restrict the inclusion of variable indices in F to the intersection of the available hours of
all co-presenters (pairs of presenters that give the same talk), e.g. if co-presenters i, i′ have availability sets
{h2, h3} and {h3, h4} (assuming room and talk availability is at least {h2, h3, h4}) then only variables with
h = h3 for these co-presenters and talk will be included. In practice, the reduction of our solution space
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to only F give a massive performance gain. For PC2013, this immediately reduced the number of variables
down to 91,514 (a reduction of 99.997%).

The variables indexed by F can be thought of as a sparse representation of the interesting elements of
the domain of f . In addition to F we will use the index set G to represent tuples (j, h, r) for which talk
j can be given by any presenter at hour h in room r, and variables gj,h,r will indicate whether or not this
occurs. We will now describe a formulation that implements each of the constraints on f in ECTTD.

ECTTD formulation

minimize: 0 (4.1)

subject to: (4.2)∑
h,r:(i,j,h,r)∈F

fi,j,h,r = Gij for every presenter i and talk j (4.3)

fi,j,h,r − fi′,j,h,r = 0 for every talk j with co-presenters i, i′ (4.4)∑
j,r:(i,j,h,r)∈F

fi,j,h,r ≤ 1 for every presenter i and hour h (4.5)

 ∑
i:(i,j,h,r)∈F

fi,j,h,r

− U × gj,h,r ≤ 0 for each gj,h,r ∈ G (4.6)

∑
j:(j,h,r)∈G

gj,h,r ≤ 1 for each hour h and room r (4.7)

binary: fi,j,h,r, gj,h,r (4.8)

The first requirement (a) of ECTTD merely enforces all availability and suitability sets. We implicitly
enforce this in our model by considering only the variables indexed over F . As such, no specific constraints
are needed in our model.

The second requirement (b) ensures that every presenter is scheduled for all of their talks, which we
receive as parameter G to ECTTD where Gij is the number of times presenter i should give talk j. For each
presenter i and talk j, the sum of the times they are scheduled (over all hours and rooms) should be Gij ;
this is constraint 4.3.

To ensure requirement (c) we force that all co-presenters have the same schedule for their shared talk
(constraint 4.4).

Requirements (a)-(c) guarantee that all presenters are scheduled for their talks and that co-presenters
are scheduled together. Requirement (d) ensures that for presenters with multiple talks that these talks are
at different hours. For each presenter i and hour h, the sum of their schedule variables for their talks in all
rooms must be less than or equal to one (constraint 4.5).

The final requirement (e) ensures that room scheduling is exclusive. We would like to simply iterate over
F for a particular pair of hour h and room r, summing all of these together. If we didn’t allow co-presenters
(like TTD) then we could simply make this sum less than or equal to one. But, for talks with co-presenters
this sum varies. To overcome this we create indicator variables gj,h,r where gj,h,r = 1 whenever talk j is
scheduled at hour h in room r; this is modeled in constraint 4.6, where U represents a sufficiently large
number. Finally, constraint 4.6 ensures that no room is multi-booked by checking the sum of gj,h,r for each
pair h, r.

Solving this feasibility problem proved tractable. We solved this formulation with the open source IP
solver CBC on PC2013 with varying numbers of talks pruned out to see how the model scales. The results
are given in Figure 2.

4.2 Model for the Preference Conference Optimization Problem

We now turn our attention to the Preference Conference Optimization (PCO) problem. PCO adds an
additional layer of complexity to ECTTD by including a matrix of preferences for attendees with the goal
of minimizing the number of conflicts caused by concurrent talks. Through experimentation we have found
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Figure 2: Run time of ECTTD model
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that considering these preferences significantly increases the difficulty of solving our conference scheduling
problem. We now present an integer programming model for PCO.

The PCO model we present builds on our previous ECTTD model. In addition to the G variables
which collapse the four dimensional f function down to three dimensions (talk× hour× room), all the while
considering only those variables for which a feasible schedule is even possible given the different availability
constraints, we will introduce three new classes of variables for PCO. The first is z which will collapse g
to two dimensions (talk × hour). Next, we will expand z to c which will have a three dimensional range
from talk× talk× hour; it will indicate if two talks j, j′ are given concurrently at hour h. As with previous
models, the corresponding script (e.g. Z for z) will represent the index set of variables that are possible given
availability constraints. The parameter w is constructed from W as a talk× talk× hour matrix where each
entry is the number of attendees who wish to attend both talks j, j′ for all h when j, j′ can be given based
on talk, presenter, and room availability. Formally, wj,j′,h = |{ek ∈ E : ek has Wkj = 1 and Wkj′ = 1}| for
each h where (h, j) ∪ (h, j′) ⊆ Z. We will minimize our model on the sum all elements in c.
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PCO formulation

minimize:
∑

(j,j′,h)∈C

wj,j′,h × cj,j′,h (4.9)

subject to: (4.10)∑
h,r:(i,j,h,r)∈F

fi,j,h,r = Gij for every presenter i and talk j (4.11)

fi,j,h,r − fi′,j,h,r = 0 for every talk j with co-presenters i, i′ (4.12)∑
j,r:(i,j,h,r)∈F

fi,j,h,r ≤ 1 for every presenter i and hour h (4.13)

 ∑
i:(i,j,h,r)∈F

fi,j,h,r

− U × gj,h,r ≤ 0 for each (j, h, r) ∈ G (4.14)

∑
j:(j,h,r)∈G

gj,h,r ≤ 1 for each hour h and room r (4.15)

 ∑
j,h:(j,h,r)∈G

gj,h,r

− U × zj,h ≤ 0 for each room r (4.16)

∑
h:(j,h)∈Z

zj,h = Gij for each talk j and some presenter i (4.17)

zj,h + zj′,h − cj,j′,h ≤ 1 for each (j, j′, h) ∈ C (4.18)

binary: fi,j,h,r, gj,h,r, zj,h, cj,j′,h (4.19)

Constraints 4.11 - 4.15 are the as our model for ECTTD. Constraint 4.16 begins to build the z variables
which will be 0-1 indicators of talk j being given at hour h via the same boolean cast mechanism described
previously by collapsing the room entries for j, h in g. To ensure that only the correct number of zs are set
to one, constraint 4.17 sums all hours h for each talk j and sets it equal to the number of times that talk j
was set to be given in the problem instance (the matrix G). It is of note that we pick any presenter i’s entry
in G for talk j; although it is possible that a co-presenter i′ may have a different value for Gi′j requirement
(c) of PCO explicitly forbids this since it would be impossible for all co-presenters to be at all instances of
a talk if they had different entries for their shared talk j, thus we can pick any presenter i.

The z variables will now be used to generate c, which indicates if a pair of talks j, j′ are being given
concurrently at hour h. Specifically, constraint 4.18 , enforces that zj,h = 1 and zj′,h = 1 =⇒ cj,j′,h = 1.
The objective (4.9) of the model is to minimize the sum of RSVP conflicts. Each variable cj,j′,h appears
with coefficient of wj,j′,h, which is the number of RSVP conflicts generated by talks j and j′ being scheduled
in the same time period. Note that if the coefficient wj,j′,h is nonzero, then the minimization nature of the
problem will force the corresponding cj,j′,h to take zero value whenever possible.

To measure the efficiency of our model we tested it on our sample set PC2013. This data set included
information about talks, speakers and attendance, but did not include participant RSVP preferences (as
they were not solicited that year), however we may use this data to generate reasonable instances by taking
the historical attendance data as a basis for generating hypothetical RSVP preferences. Attendance figures
we recorded for each talk given at PC2013; a distribution of the attendance per talk is shown in Figure 3.
The sum of all attendance counts was 4101 [6] for around 1000 unique attendees. For the purposes of testing

our model created a W such that
n∑
i=0

Wij was equal to the attendance count for that talk j, i.e. we created

an “RSVP” for each real talk attendance at PC2013. Since individual attendee attendance wasn’t tracked
(only totals were) we took some liberties in distributing the RSVPs across the attendees in our model. We
first randomly spread the RSVPs over the attendees using a uniform distribution; that is, if talk j had an
attendance of 24 in PC2013 then 24 attendees were randomly chosen to attend this talk. We solved our
model with commercial solver Gurobi which returned a solution with an objective value of 0 after 64 seconds,
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Figure 3: Distribution of attendance at PC2013
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i.e. a schedule with absolutely no attendee conflicts. All computations were run on a machine with 4 12-core
Intel Xeon E5-2695 CPUs running at 2.4 GHz with 96 GB of RAM

After finding a non-conflicting schedule for uniformly distributed random attendees that followed the
attendance counts in PC2013 we turned our attention to how the solver would react when the random
attendees were not distributed uniformly. Our intuition was that, like the actual attendance figures, the
distribution of attendance per attendee would not be evenly spaced out; there would be some attendees who
went to many talks, and some who went to only a few. We chose a normal distribution with µ = 500, σ = 100.
For each attendance in the PC2013 distribution (Figure 3) a random integer from the normal distribution
was chosen. Since µ = 500 those attendees with index around 500 were much more likely to be chosen to
RSVP to the talk then those with indices 50 or 950, which implemented our intuition that a small percentage
of attendees will RSVP for many talks while the bulk of those remaining will RSVP to relatively few. In
addition, we added a check to ensure that no attendee was selected to attend more talks than were hours
available; such a scenario would automatically preclude a zero objective value. Even with an extremely
powerful computer to run our model on and a state-of-the-art commercial solver we were unable to solve this
instance after 24 hours. To help understand this phenomenon we created a half-sized problem (half as many
talks and hours) and ran the model with decreasing values of σ and found that the solving time exploded
exponentially as σ decreased; the average running time for σ = 200 was 22 seconds but increased to 22,683
seconds for σ = 100.

4.2.1 Performance considerations

After including RSVP preferences in our test models, the integer programming models became significantly
more difficult to solve. One possible cause of this is symmetry present in the models, a property that often
leads to increased solution time [7]. An integer programming model is symmetric if its variables can be
permuted without changing the structure of the problem [8]. Our model exhibits high amounts of symmetry
in relation to the scheduling of talks in rooms. If two rooms have the same availability and suitability set
then permuting talk assignments among them in each hour produces no discernible change to the objective.
It may be, however, that the solver will choose to branch early on in its branch-and-bound tree on these room
assignments, leading to lots of unnecessary computation. In general it is difficult for the solver to detect that
such variables “really” represent the same thing, although there are several mechanisms for determining and
avoiding symmetry in solvers [9]. However, it is easy for us to identify this symmetry and avoid it.

Two rooms will be said to be symmetric if they have the same suitability and availability sets, i.e. for
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rooms Rα and Rβ we have that Rα and Rβ are symmetric if and only if

Aα = Aβ and

{i | Rα ∈ Si for all 1 ≤ i ≤ m} = {i | Rβ ∈ Si for all 1 ≤ i ≤ m}.

To break the symmetry we create room classes which will represent several rooms with the same attributes.
First, we make a new room set R′ = {r′ = {r1, r2, · · · , rp} ⊆ R | all r ∈ r′ are symmetric with each other}.
The corresponding new availability set A′ has simply the common availability set for each new r′ ∈ R′. For
the new suitability set S′ we replace each instance of r with the room class r′ that r is a member of. When
we solve our model talks will be booked to room classes, avoiding the symmetry that arises by having to
consider two essentially “equal” rooms separately. When our model is solved we will have bookings in room
classes, and we can arbitrarily assign the talk to any room in that class. We must make only one adjustment
to our model: Constraint 4.15 in the PCO model ensures that each room has only one talk booked in it per
hour. For our room classes we wish to relax this, requiring only that the number of bookings be at most the
number of rooms in the class; this way, when we assign actual rooms from the solved model we can match
talks to rooms in a one-to-one way. Formally, we will change Constraint 4.15 to∑

j∈Gh,r

gj,h,r ≤ |r|. (4.20)

It is easy to see that this model degenerates to our regular PCO model when no rooms are symmetric; in
this case each room class would contain only one room. In practice the removal of the room symmetries
increased performance by roughly a factor of 5x for our solver on PC2013, which contained only three room
classes but had fourteen rooms (see Figure 4).

The next step we took to improve performance was to dualize one class of constraints. In this technique,
these requirements are moved from being hard constraints in the model, to appearing in the objective function
with a sufficiently large penalty to ensure their satisfaction. We chose to dualize constraint (d), namely that
no presenter is scheduled for more than one talk per hour. Intuitively, this seemed like a promising adjustment
because these constraints are similar in structure to the RSVP conflicts that are minimized in the objective
function. We first created 0-1 indicator variables di,h = 1 ⇐⇒ presenter i is doubly (or more) booked at
hour h by changing 4.13 (which enforced (d)) to ∑

j,r∈Fi,h

fi,j,h,r

− U × di,h ≤ 1. (4.21)

Where U is a sufficiently large number. The left hand side of 4.21 is the number of times that presenter i
is scheduled at hour h, and di,h may be 0 or 1 if this sum is less than 2, but must be 1 if the sum is 2 or
greater. We then changed the objective (4.9) to

minimize:
∑

(j,j′,h)∈C

wj,j′,h × cj,j′,h +
∑

(i,h)∈D

U × di,h. (4.22)

Our new objective places a penalty of U on presenters being multiply booked. We should choose U sufficiently
large so d is identically zero, otherwise the model can be resolved with a larger value of U . In practice,
dualizing PCO led to moderate performance increases of roughly 75% faster.

For a summary of solution times comparing the original model with the improved models discussed in
this subsection see Figure 4. The three models compared are: the Standard model, which corresponds to
the PCO formulation given by (9)-(15); the Symmetry model, which incorporates the symmetry breaking
reformulation described above; and finally the Dualized model, which incorporates both the symmetry
breaking reformulation, and the dualization of constraint (d) as described above. The graph plots the
average running time for solving 10 randomly generated instances for values of σ between 100 and 400 with
increments of 10. The table slows the same information, only listing times for instances where σ is a multiple
of 50. All times are listed in seconds.
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Figure 4: Run time of PCO model with decreasing σ
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(σ) Standard Symmetry Dualized
400 5.4 0.8 0.4
350 10.0 1.2 0.4
300 6.8 3.0 0.8
250 12.8 6.0 2.2
200 22.8 10.2 2.0
150 196.2 156.8 45.2
100 22683.7 4179.2 3282.6

5 Conclusion

Conference scheduling represents an important class of timetabling problems. This paper studies a confer-
ence scheduling problem where participant RSVP conflicts are minimized, subject to a collection of hard
constraints. We have demonstrated integer programming to be an effective solution technique, especially
after incorporating symmetry breaking and other improvements.
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