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Positional numeration systems have come to dominate mathematics, with the ubiquitous base-
ten number system used nearly universally. In addition to base-ten, other bases such as base-two
and base-sixteen have found widespread usage (for example in computer engineering). We review a
particularly novel take on the positional numeration system: the golden ratio base, first introduced
by George Bergman in 1957 [1], who was a 12 year old junior high student at the time1. We
shall prove that the number system is correct, starting with basic properties of the golden ratio up
to proofs of the existence and uniqueness of representations for certain classes of numbers, which
rely on algebraic number theory (none of which were concretely shown in [1]). In addition we will
introduce simpler algorithms for performing arithmetic in the system than were given in [1].

Background

Recall that the golden ratio is

φ =
1 +
√

5

2
.

A history of the golden ratio is beyond the scope of this paper. Instead, we will base the results of
our report on a peculiar property of φ and its connection to the so-called Fibonacci numbers.

Proposition 1. Let A be a recurrence relation with An = An−1 + An−2. Then, lim
n→0

An+1

An
= φ.

Proof. We first note that

1 +
1

φ
= 1 +

1

1 +
√

5

2

= 1 +
2

1 +
√

5
= 1 +

2(
√

5− 1)

(1 +
√

5)(
√

5− 1)
= 1 +

2(
√

5− 1)

4
=

1 +
√

5

2
= φ.

(1)

Let Rn = An+1

An
. Expanding Rn,

Rn =
An+1

An
=
An + An−1

An
= 1 +

1

Rn−1
. (2)

If we let L = lim
n→∞

Rn, then clearly lim
n→∞

Rn+1 = L as well. Then by (2),

L = lim
n→∞

Rn+1 = lim
n→∞

(
1 +

1

Rn

)
= lim

n→∞

(
1 +

1

lim
n→∞

Rn

)
= 1 +

1

L
.

1Bergman’s academic institution in [1] is listed as “Jr. High School 246, Brooklyn, N.Y.”
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Already by (1) we can see that L = φ works. Going full circle, we can compute L directly:

L2 = L
(
1 + 1

L

)
= L + 1 ⇒ L2 − L − 1 = 0. Using the quadratic formula, L =

1±
√

(−1)2−4(1)(−1)
2(1)

=
1+
√
5

2
= φ.

Proposition 2. Let φ be the golden ratio and Fn be the Fibonacci sequence. Then, φn = φn−1 +
φn−2 = Fnφ+ Fn−1.

Proof. The simplest method for proving φn = φn−1 + φn−2 is by induction. We directly compute
for the base case of n = 2.

φ2 =

(
1 +
√

5

2

)2

=
6 + 2

√
5

4
=

3 +
√

5

2
=

1 +
√

5

2
+ 1 = φ1 + φ0.

Now, assuming that the proposition holds for all natural numbers greater than 2 and less than
n, we need to show that φn = φn−1 + φn−2. Since φn = φφn−1, by the inductive hypothesis:
φn = φφn−1 = φ (φn−2 + φn−3) = φn−1 + φn−2.

Given this result, we can show that φn = Fnφ + Fn−1. Recall that the Fibonacci sequence is
generated by the recurrence relation in Proposition 1 with initial conditions F0 = 0 and F1 = 1.
(The first few numbers therefore are 0, 1, 1, 2, 3, 5, 8, . . .). For simplicities stake we will again use
the base case of 2; φ2 = (1)φ + 1 = F2φ + F1. If this holds true for all natural numbers up to n,
then φn = φn−1 + φn−2 = (Fn−1φ + Fn−2) + (Fn−2φ + Fn−3) = (Fn−1 + Fn−2)φ + (Fn−2 + Fn−3) =
Fnφ+ Fn−1.

The golden ratio base

The golden ratio base is a positional base system using the digits 0 and 1. The digits represent
powers of φ; non-negative on the left side of the decimal point and negative on the right. For
example2, 101.01φ = φ2 + φ0 + φ−2 = (1φ + 1) + (1) + (−1φ + 2) = 4. One of the properties of
base-φ is that numbers have several representations: 100.1111φ = φ2 + φ−1 + φ−2 + φ−3 + φ−4 =
(1φ+ 1) + (1φ− 1) + (−1φ+ 2) + (2φ− 3) + (−3φ+ 5) = 4. Thus, 101.01φ = 100.1111φ = 4, which
is not immediately obvious.

By Proposition 2, φn = φn−1 + φn−2, or in terms of base-φ: 100φ = 11φ. So, whenever we
encounter two consecutive 1’s in a base-φ representation there is an equivalent representation that
uses one less 1: 100.1111φ = 101.0011φ = 101.01φ = 4. We can continually repeat this process until
there are no adjacent 1’s.

Definition 3. A number in base-φ is in standard form if it contains no consecutive 1’s.

Existence and uniqueness

Can all positive integers be uniquely represented in standard form? To see that this is true [2]
we will study Z[φ] = {a + bφ | a, b ∈ Z}, the quadratic integer subring of the quadratic field
Q(
√

5) equipped with the usual operations of multiplication and addition (analogous to complex
arithmetic). Since Z[φ] ⊆ R, we will use the natural ordering of R for < and ≤. We define the
conjugate of α ∈ Z[φ] as α = a− b/φ and the norm N(α) = αα = a2 + ab− b2. Of additional note
is that α = α− b

√
5 and so

N(α) = αα = α(a− b/φ) = α(α− b
√

5). (3)

2Such a base requires using the “extended” Fibonacci sequence where f−n = (−1)n+1fn
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Our norm satisfies the property N(αβ) = N(α)N(β) for α, β ∈ Z[φ]. Additionally, N(φ) =
N(φ−1) = −1 and thus

|N(φk)| = 1 for all k ∈ Z. (4)

Lastly, N(α) = 0 ⇐⇒ α = 0.

Lemma 4. If α = a+ bφ, α ∈ Z[φ] with 1 ≤ α <
√

5, then |N(α)| > |N(α− 1)|.

Proof. Let γ = c+ dφ, γ ∈ Z[φ] with 0 ≤ γ <
√

5. Using (3) we have

|N(γ)| = γ|c− d/φ| = γ|γ − d
√

5| =

{
γ(d
√

5− γ) if d ≥ 1,

γ(γ − d
√

5) if d < 1.
(5)

Since 1 ≤ α <
√

5 we can use (5) to calculate N(α) and N(α− 1). If b ≥ 1, then b
√

5 ≥ 2α− 1 and
the first case of (5) applies: |N(α)| = α(α−b

√
5) > (α−1)(b

√
5−(α−1)) = |N(α−1)|. Otherwise,

when b < 1 and b
√

5 < 2α−1 we have |N(α)| = α(α−b
√

5) > (α−1)
(
(α− 1)− b

√
5
)

= |N(α−1)|.
Either way, |N(α)| > |N(α− 1)|.

Theorem 5. For every positive integer n, there is a corresponding finite sequence of distinct integers
k1, k2, · · · , km such that n = φk1 + φk2 + · · ·+ φkm with ki− ki+1 ≥ 2 for all 1 ≤ i < m, i.e. n has a
finite standard form base-φ representation.

Proof. Let σ be a positive number in Z[φ]. Then, pick k ∈ Z such that φk ≤ σ < φk+1 and let
α = φ−kσ. Since 1 ≤ α < φ <

√
5, by (4) we know that |N(α)| = |N(φ−kσ)| = |N(φ−k)N(σ)| =

|N(σ)|. Furthermore, since α = φ−kσ, α − 1 = φ−kσ − 1 = φk(φ−kσ − 1) = σ − φk and so
|N(α−1)| = |N(σ−φk)|. By Lemma 4 we know that |N(α)| > |N(α−1)|, which gives us the result
that |N(σ)| > |N(σ − φk)|. If σ > φk we can repeat this process for σ′ = σ − φk. We know that
each successive φk choice reduces the norm: |N(σ)| > |N(σ − φk1)| > |N(σ − φk1 − φk2)| > · · · ≥ 0.
Since |N(α)| is a positive integer this process eventually stops, and |N(σ−φk1−φk2−· · ·−φkm)| =
0⇒ σ − φk1 − φk2 − · · · − φkm = 0⇒ σ = φk1 + φk2 + · · ·+ φkm .

Each of the integers k1, k2, · · · , km are distinct. In addition, for each k we have φk ≤ σ < φk+1 ⇒
0 ≤ σ − φk < φk−1 and thus for all ki, ki − ki+1 ≥ 2, so our base-φ representation is in standard
form. Because σ is an arbitrary element in Z[φ] and Z+ ⊆ Z[φ], we conclude that each positive
integer has a finite standard form representation in base-φ.

One may notice the use of the word finite in Theorem 5. Is this necessary? In fact, in every
base-n system all terminating representations have an alternate non-terminating and recurring
representation [3]. Analogous to the infamous 0.999 . . . = 1 result in base-10, in base-φ we have
0.101010 . . .φ = 1φ.

Proposition 6. For every non-zero number n in base-φ the final 1 can be replaced with 010101 . . ..

Proof. Since n 6= 0, n contains at least one 1 in base-φ. Let φk correspond to the position of the
final 1 in n. Consider

∞∑
i=0

φ−2i+(k−1) = 101010 . . .φ starting at k − 1 (position to the right of the last 1). (6)
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Since (6) is an infinite geometric series with common ratio φ−2 ≈ 0.3819 and start term φk−1, we
have

∞∑
i=0

φ−2i+(k−1) =
φk−1

1− φ−2
=
φ2

φ2

φk−1

1− φ−2
=

φk+1

φ2 − 1
=

φk+1

F2φ+ F1 − 1
=
φk+1

φ
= φk. (7)

By (7), Adding 101010 . . .φ after the last (at position k) 1 of n has the effect of increasing n by φk.
So, by removing φk (putting a 0 at k), we have n− φk + φk = n, which was to be shown.

Interestingly enough the repeating form of any integer is also in standard form (assuming the
original integer was in standard form). This is why Theorem 5 restricted uniqueness to finite
standard forms.

Proposition 7. All finite standard base-φ representations of the positive integers are unique.

Proof. Let α, β ∈ Z+ with α = β but having different standard base-φ representations. Let
kα1 , k

α
2 , . . . , k

α
m be the powers of φ for α and kβ1 , k

β
2 , . . . , k

β
n be the powers of φ for β with both

being ordered highest to lowest (i.e. kβ1 > kβ2 > · · · ).
For our first case, without loss of generality assume kα1 > kβ1 . It is worth noting that φz > 0 for

all z ∈ Z, which tells us that removing any power of φ from a positive integer will make it smaller
(and adding a power will make it larger). Since β is in standard from it contains no consecutive
powers of φ. What is the largest possible standard form number whose highest power of φ is kβ1 ? By
Proposition 6 we know that the infinite standard form 101010φ . . . starting at k is equal3 to φk+1.

But β has a finite standard form, so β < φk
β
1+1. Since, kα1 > kβ1 we have that β < φk

β
1+1 ≤ φk

α
1 ≤ α,

a contradiction.
If kα1 = kβ1 then there must be some j < max(m,n) where kαj 6= kβj i.e. the two base-φ

representations are different so they must differ by at least one digit. We can repeat the above
process with kβj replacing kβ1 resulting in the conclusion that

β −
j−1∑
i=1

φk
β
i < α−

j−1∑
i=1

φk
α
i

which again leads us to β < α, a contradiction.

Corollary 8. Let n be a number with a finite base-φ representation in standard form whose highest
digit is at place k. Then, n < φk+1.

Arithmetic in base-φ

To make our arithmetic methods more intuitive, we shall cheat slightly and create a new “extended”
base-φ system that allows all of the integers as digits, not just 0 and 1. For example, 210.01φ =
2 · φ2 + φ + φ−2. Any number with a finite extended base-φ representation can be converted to a
finite regular base-φ representation. Rather than provide a formal proof we shall simply illustrate
the process for performing the conversion, with the hope that its correctness is obvious. We rely on
two new identities; firstly, 2 · φk = φk+1 + φk−2 which can be verified directly using Proposition 2:

φk+1 + φk−2 = φk + φk−1 + φk−2

= φk + φk

= 2 · φk. (8)

3(7) used starting point k − 1
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The second identity is −φk = −φk+1 + φk−1. Similarly,

−φk = −φk

φk+1 − φk = φk+1 − φk

φk + φk−1 − φk = φk+1 − φk

−φk+1 + φk−1 = −φk (9)

The process for converting a positive number in extended base-φ to standard base-φ is as follows:

1. For any digit non-0,1 digit c at place k in the base-φ representation corresponding to c · φk,
factor c to unique positive integers m,n, s: c = s(2m + n) with n ∈ {0, 1} and s ∈ {−1, 1}.
This follows directly from the division algorithm, with divisor 2, extended to allow negatives.
So, for −5 · φk we would have −1(2 · 2 + 1)φk.

2. Add m to the digits k + 1 and k − 2. This follows from (8). Change the k digit to sn. This
is the remainder of removing all the even factors from c. Repeat until all digits are either 1,
0, or −1.

3. For any digit k with the value −1, add −1 to digit k + 1 and add 1 to digit k − 1. Change
digit k to 0. This follows from (9). If any digits are greater than 1, perform step 2. Repeat
until no negatives remain, indicating the number is positive, or until a lone negative remains
in the highest occupied digit, indicating the number is negative (which is not possible since
the number is positive).

4. Convert the representation (which now contains only 0,1 digits) to standard form using the
identity 11φ = 100φ.

The above process works in two parts, first reducing all digits greater than 1 (or less than −1) by
adding values to the right and left of the digit to maintain equality. For example, 50φ ⇒ 210.2φ ⇒
1011.2φ ⇒ 1012.001φ ⇒ 1020.011φ ⇒ 1100.111φ. Since this contains no negatives, step 3 can be
skipped and we can directly convert to standard form: 1100.111φ ⇒ 10000.111φ ⇒ 10001.001φ. For
each digit we reduce we increase “away” from the digit in question; because the number has a finite
extended base-φ representation this process will eventually terminate. This first part is analogous
to “carrying” in standard addition, with the exception that we must carry to two different places
as opposed simply directly to left as in base-10.

The second part of the process involves canceling out negatives. At this point all digits are
either 1, 0, or −1. Each −1 digit can be “shifted over” one by increasing the digit to the right. If
any digits to the left of this are 1, the negative will eventually “cancel out”. If all of the digits to
the left are 0 (assuming we’ve shifted all other negatives into this digit), then the number must be
negative by Corollary 8. However, we’ve restricted ourselves to non-negative numbers, therefore all
negatives will cancel out. This process is analagous to “borrowing” in standard subtraction, with
the exception that we must borrow from two places. We now have a number in base-φ which can
be trivially reduced to standard form.

Although the above process may not seem like a simplification, it makes the actual arithmetic
operations trivial. For more complicated algorithms that do not rely on this method, see [1].

Addition

Simply add the digits place-wise, and then convert back to standard form.
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1 0 1 0 . 1 2
√

5 + 2

+ 1 0 0 . 1 0 1 2
√

5− 1
1 1 1 0 . 2 0 1 → convert to standard form

1 0 0 1 0 . 2 0 1 · · ·
1 0 0 1 1 . 0 0 2 · · ·
1 0 1 0 0 . 0 1 0 0 1 4

√
5 + 1

Subtraction

Again, simply subtract place-wise and convert back to standard form.

1 0 1 0 . 1 2
√

5 + 2

- 1 0 0 . 1 0 1 2
√

5− 1
1 -1 1 0 . 0 0 -1 → convert to standard form
1 -1 1 0 . 0 -1 0 1 · · ·

2 0 . 0 -1 0 1 · · ·
2 0 . -1 0 1 1 · · ·

1 0 0 . 0 1 3

Multiplication

Multiplication is the same as in base-ten with no carry; we ignore the decimal point and re-insert
it at sum of the number of decimal places.

1 0 1 0 . 1 2
√

5 + 2

× 1 0 0 . 1 0 1 2
√

5− 1
1 0 1 0 1 -3 digit

1 0 1 0 1 -1 digit
+ 1 0 1 0 1 2 digit

1 0 1 1 1 2 0 2 0 1 → insert decimal point
1 0 1 1 1 2 . 0 2 0 1 → convert to standard form
1 1 0 0 2 0 . 0 3 0 1 · · ·

1 0 0 0 1 0 0 . 2 1 0 2 · · ·
1 0 0 0 1 0 1 . 0 1 2 0 0 1 · · ·
1 0 0 0 1 0 1 . 0 2 0 0 1 1 · · ·
1 0 0 0 1 0 1 . 1 0 0 2 · · ·
1 0 0 0 1 0 1 . 1 0 1 0 0 1 · · ·
1 0 0 0 1 1 0 . 0 0 1 0 0 1 · · ·
1 0 0 1 0 0 0 . 0 0 1 0 0 1 2

√
5 + 18

Division

Long division can also be performed, although one most be careful of decimal places.
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1 0 0 . 0 1) 1 0 0 1 0 . 0 1 0 1 9÷ 3
→ move decimal place over by 2

1 0 0 . 0 1 3
1 0 0 0 1) 1 0 0 1 0 0 1 . 0 1 → put 1 in 2’s place

- 1 0 0 0 1 1× 10001
1 -1 → convert to standard form

1 → bring down 0101
1 1 0 1 → convert to standard form

1 0 0 0 1 → put 1 in -2 place
- 1 0 0 0 1 1× 10001

0 no remainder

Rationals and irrationals

We now know that all positive integers have a finite base-φ representation. What about the ra-
tionals? Much like the familiar base-ten system, all rationals have a finite or repeating base-φ
representation. To show this, we will prove something a little stronger.

Theorem 9. Let q be a number. Then, q has a finite or infinitely recurring base-φ representation
if and only if q ∈ Q(

√
5).

Proof. (⇒) If q has a finite base-φ representation then q = φk1+φk2+· · ·+φkn for some k1, k2, . . . , kn ∈
Z. Since φ ∈ Q(

√
5) and Q(

√
5) is closed under addition and multiplication (by virtue of being a

field), q ∈ Q(
√

5). If q is infinitely recurring, then there must be some m with km < 0 where the
recurrence first starts. If n is the location of the last element before the recurrence starts a second
time, then, l = km − kn + 1 is the length of the recurrence. Let k1 > k2 > · · · . Then,

q = φk1 + φk2 + · · ·+ φkm−1 +
∞∑
i=0

(
φ−il+km + φ−il+km+1 + · · · φ−il+kn

)
. (10)

We can distribute the summation to each individual term. For each term j with m ≤ j ≤ n, we
have

∞∑
i=0

φ−il+kj .

This is a geometric series with common ratio φ−l and start term φkj . Since l > 0 and 0 < φa < 1
for all a < 0, this series converges. So,

∞∑
i=0

φ−il+kj =
φkj

1− φ−l
=
φl

φl
φkj

1− φ−l
=

φl+kj

φl − 1
(11)

The denominator of (11) is problematic. However, we can expand φl via repeated applications of
the identity φn = φn−1 + φn−2. If l is even we have φl = φl−1 + · · · + φ7 + φ5 + φ3 + φ2, i.e. all
odd powers less than l as well as φ2. If l is odd we have φl = φl−1 + · · · + φ6 + φ4 + φ2 + φ, i.e.
all even powers less than l as well as φ. In either case this contains φ2. But, φ2 = φ + 1, so in
both cases we can cancel out the −1 in the denominator. Let u = φl+kj be the numerator in (11)
and d be the denominator. If l is even then, d = φl−1 + · · · + φ7 + φ5 + φ3 + φ. If it is odd, then
d = φl−1 + · · ·+φ6 +φ4 + 2 ·φ. In the even case d is a finite number in base-φ form! In the odd case
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it is in extended base-φ form, which can be converted to base-φ (see the section on arithmetic in
base-φ). Either way, the denominator has a finite base-φ representation, so by our previous result
d ∈ Q(

√
5). In addition, clearly u ∈ Q(

√
5). Since d 6= 0, by the definition of a field u

d
∈ Q(

√
5).

This tells us that the infinite sum in (10) converges to an element Q(
√

5), and therefore q ∈ Q(
√

5).
(⇐) Let q ∈ Q(

√
5). Then,

q =
a

b
+
c
√

5

d
=
ad+ bc

√
5

bd
, a, b, c, d ∈ Z.

Clearly, ad and bc are integers. Furthermore since
√

5 = 10.1φ, m = ad + bc
√

5, n = bd have finite
base-φ representations (addition and multiplication by finite base-φ numbers always produces finite
base-φ numbers; for the specific algorithms see the previous section). Since m and n have finite
base-φ representations we can divide them by long division as outlined in the previous section. If n
divides m then the quotient is in finite base-φ form. If n does not divide m evenly, then eventually
the long division will be acting to the right of the decimal point in the dividend and thus selecting
from only a finite number of remainders (which must eventually repeat) resulting in an infinite
repeating representation.

Conclusion

We have shown how an irrationally based number system can be derived from the properties of φ
itself. This golden ratio base provides an interesting study into how numbers are represented. This
is especially true concerning so-called “rationals” and “irrationals”; we must consider the number
as an abstract quantity and not merely in terms of their familiar base-ten representation. Algebraic
number theory allows us to view these objects in terms of their relation to each other, and from it
we can derive such intriguing results as seen in this report.
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