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Abstract
Näıve search algorithms that look for an optimal or near-optimal solution are unacceptable

when the solution space is exponentially (or otherwise prohibitively) sized. For multi-objective
optimization problems there often does not exist a single optimal solution for all objectives.
Rather, our aim is to produce candidate solutions that offer the best “trade-offs” between
the objectives. We compare Guided Local Search, a general stochastic method for searching a
solution space, to NSGA-III, an evolutionary algorithm for solving multi-objective optimization
problems.

1 Introduction

An optimization problem asks us to determine the “best” solution from all feasible solutions to a
problem. Generally, we are provided with an objective function that “scores” each solution; our
goal is to find either the minimum or maximum of this function. Augmenting the objective function
are a set of constraints on the variables which must be satisfied for any solution. A multi-objective
optimization problem (MOOP) is an extension of optimization problems that allows for more than
one objective function. An example MOOP is given in Figure 1.

minimize f1(x1, x2, x3)
or f2(x1, x2, x3)

maximize

subject to c1(x1, x2, x3) ≤ 0
c2(x1, x2, x3) = 0
c3(x1, x2, x3) > 0

Figure 1: Example MOOP

Linear and integer programming has long been used to solve a wide variety of problems in
engineering and the sciences, but these methods fail when the objective problems are inherently
non-linear. Algorithms that can effectively deal with such non-linear objectives and constraints
offer solutions to a strict superset of problems that can be modeled with linear programming,
although algorithms for solving the latter are often much faster. We shall investigate two algorithms
for solving MOOPs: a general search technique known as Guided Local Search and a specialized
evolutionary algorithm known as NSGA-III.
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1.1 Multi-objective optimization

Single-objective optimization is characterized by a single “cost” function that is either minimized
or maximized. Since there is only one such function, we are asked to find the single assignment of
variables that provides the designated optimal objective value.

Definition 1 (Objective function). An objective function is a function f : Rn → R.

In a multi-objective scenario with n variables and m objectives we can compose a new function
F as given in Figure 2. We see that F : Rn → Rm. Since there is no total order on Rm for m > 1

F (x1, x2, . . . , xn) =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

· · ·
fm(x1, x2, . . . , xn)


Figure 2: Construction of the composite objective

there is no single assignment of variables that we can call “the best”. Thus for MOOPs, we do not
ask for a single point that results in an optimal objective, but rather a collection of points that we
determine to be “more optimal” than the rest.

Definition 2 (Pareto dominance). Let P be an m-objective minimization MOOP on n variables
with composite objective function F . Also, let x, y be vectors in Rn that satisfy the constraints of
P . Then, F (x) dominates F (y) if and only if for each k ∈ {1, 2, . . . ,m} fk(x) ≤ fk(y) and there
exists some k such that fk(x) < fk(y).

Definition 3 (Pareto Front). Let P be an m-objective minimization MOOP on n variables with
composite objective function F . The Pareto Front is the subset {F (x), F (y), . . . } of all valid
solutions to P that are non-dominated by any other solution.

If a point F (x) dominates F (y) then we can say that F (x) is “at least as good” as F (y) for
all objectives and is “better than” F (y) in at least one objective. For a MOOP P , the concept of
Pareto dominance assigns a partial order to the set of valid solutions. The set of solutions that are
not dominated by any other point are known collectively as the Pareto Front; in essence it is the
collection of best “trade-offs” between the objectives. The purpose of a MOOP algorithm is to find
or approximate the Pareto Front.

2 Guided Local Search

Because most optimization problems don’t have a simple algebraic method to solve them algorithms
tend to use some sort of search to find the optimal points. If the objective functions do not behave
in a smooth manner then an exhaustive search may be necessary, which is impossible. However, by
assuming that the objectives behave in a somewhat continuous manner the search algorithms can
make inferences about the behavior of the functions around points.

Guided Local Search (GLS) is a general stochastic metaheuristic that can be applied to an
existing search algorithm. Many search algorithms will continue to refine a solution if the objective
is improved on every iteration. GLS attempts to “break out” of local optimums so as to find the
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global optimum. It achieves this by penalizing properties of locally optimal solutions so that the
underlying search algorithm is biased away from refining those solutions; the hope is that this will
allow it to discover the globally optimal solution. The structure of GLS is given in Algorithm 1.

Algorithm 1 Guided Local Search [1]

function GuidedLocalSearch(Itermax, λ)
fpenalties = ∅
Sbest = RandomSolution()
for Iteri ∈ Itermax do

Scurr = LocalSearch(Scurr, λ, fpenalties)
futilities = CalculateFeatureUtilities(Scurr, fpenalties)
fpenalties = UpdateFeaturePenalties(Scurr, fpenalties, futilities)
if Cost(Scurr) ≤ Cost(Sbest) then

Sbest = Scurr
end if

end for
end function

GLS penalizes “features”, which can be any property of a solution to the given problem. futilities
is a vector of scalars calculated from a candidate solution Scurr which describes the magnitude of each
feature in the solution. From futilities the fpenalties vector is calculated, which will be used to augment
the Cost calculation inside of LocalSearch. Presumably the augmented Cost calculation will
cause LocalSearch to search in a direction it otherwise would not have with the original Cost,
thus penalizing any solutions that heavily exhibit features selected by UpdateFeaturePenalties.
The λ parameter is a constant vector used to scale the penalties.

2.1 Greedy Pareto Local Search

The GLS algorithm requires a LocalSearch function that is able find new solutions to the problem
based on the augmented cost functions given by the penalties. Such a search function must be picked
specifically for the target problem. Greedy Pareto Local Search (GreedyPLS) is a search algorithm
that attempts to build up a Pareto Front by exploring neighboring solutions and building up an
“archive” of non-dominated points. The main procedure for GreedyPLS is given in Algorithm 2.

The generic Guided Local Search algorithm is designed for any problem, but the LocalSearch
function must be tailored to the problem. GreedyPLS takes a set of augmented objective functions
[g1, . . . , gk] and a candidate PF archive (which may be empty). The algorithm creates a new
solution in the neighborhood of an existing solution in archive and determines if the new solution
dominates the previous one. Once a solution is found that is non-dominated by the points in the
PF, we call UpdateArchive which adds the solution to the archive and prunes solutions once
a predetermined limit is reached (these are the HL and SL parameters). The UpdateArchive
procedure is given in Algorithm 3.

The goal of GreedyPLS is to find an approximate PF and it is the responsibility of Up-
dateArchive to ensure that this PF is of a manageable size. A candidate point is only added
to archive if it is non-dominated by all other points in the archive. If the point dominates other
points in archive those points are removed, maintaining the invariant that all points in the PF are
non-dominated. When the PF contains SL (soft limit) points SL−HL points are removed from the
archive. To choose which points to remove the crowding distance is calculated for each point and

3



Algorithm 2 Greedy Pareto Local Search [2]

function GreedyParetoLocalSearch([g1, . . . , gk], archive,HL, SL)
if archive = ∅ then

s0 = InitialSolution()
archive = s0

end if
while ∃s ∈ archive such that Visited(s) = false do

for s′ ∈ Neighborhood(s) = false do
Evaluate(s′, [g1, . . . , gk])
if s′ dominates s then

s = s′

fails = 0
else if s does not dominate s′ then

UpdateArchive(s′, archive,HL, SL)
else

fails = fails+ 1
if fails > maxFails then

break
end if

end if
end for
Visited(s) = true

end while
return archive

end function
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Algorithm 3 Update Archive [2]

function UpdateArchive(s, archive,HL, SL)
if archive = ∅ then

archive = {s}
else

added = true
for s′ ∈ archive do

if s′ dominates s then
added = false
break

else if s dominates s′ then
archive = archive \ {s′}

end if
end for
if added = true then

archive = archive ∪ {s}
end if

end if
if |archive| > SL then

Dist = CrowdingDistanceAssignment(archive)
archive = Sort(archive,Dist)
DelSet = {archive[1], . . . , archive[|archive| −HL]}
archive = archive \ DelSet

end if
end function
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those points with the smallest distance are deleted. In essence, CrowdingDistanceAssignment
assigns to each point a scalar that represents how clustered together each point is. The points that
are more crowded are assumed to be less favorable than those farther away. CrowdingDistance-
Assignment is given in Algorithm 4.

Algorithm 4 Crowding distance assignment [3]

function CrowdingDistanceAssignment(A)
K = |A|
for 1 ≤ i ≤ K do

DistA[i] = 0
end for
for each objective m do

A = Sort(A,m)
DistA[1] =∞
DistA[K] =∞
for 2 ≤ i ≤ K − 1 do

DistA[i] = DistA[i] + (A[i+ 1].m− A[i− 1].m) / (A[K].m− A[1].m)
end for

end for
end function

GreedyPLS was designed for discrete optimization problems such as Traveling Salesman. The
ability to enumerate and visit all members with Neighborhood implies a discrete structure which
we lack for generic multi-objective optimization. Research has been conducted in ways to determin-
istically search the neighborhood space by viewing the real numbers as binary strings [4] but this
can be extremely computationally expensive for more than two objectives. We chose a slightly dif-
ferent approach to Neighborhood: using a genetic polynomial mutation approach that randomly
mutates on average one variable per iteration to produce a new candidate solution. For brevity we
exclude listing the algorithm here – see [5].

2.1.1 Running time of GreedyPLS

The running time of GreedyParetoLocalSearch depends on UpdateArchive which in turn
may invoke CrowdingDistanceAssignment. CrowdingDistanceAssignment loops over
each objective, and for each objective over every point. Since |archive| ≤ SL, if M is the number
of objectives then CrowdingDistanceAssignment is O(M ×SL). UpdateArchive also loops
over every point to determine if the candidate solution is non-dominated, which is O(SL). Since
SL ≤M × SL, UpdateArchive is O(M × SL).

GreedyParetoLocalSearch searches the Neighborhood of each candidate solution once.
Our implementation of Neighborhood generates a constant number G mutations of s per run.
Each point may be non-dominated requiring a call to UpdateArchive. The Visited property
of each solution is set to true regardless of whether or not the solution was actually replaced by a
new mutated solution inside the “for” loop. Thus, the “while” loop is bounded by the maximum
size of |archive|, which is SL. Therefore the complexity of GreedyParetoLocalSearch is
O(SL×G×M × SL) = O(SL2 ×G×M).
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2.2 Guided Pareto Local Search

The generic Guided Local Search (Algorithm 1) procedure must be adopted to our specific problem.
We must identify properties of our solutions that can be penalized so as to escape local optimum.
We define the utilities as whether or not the variable values for a solution are present in fixed
size “bins”. For example, in an one-objective, one-variable problem with the variable bounded by
0 ≤ x ≤ 1, if we choose to create ten utilities then each utility would represent if the variable is
between [0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0]. If a specific utility is penalized, then the next iteration of
GreedyPLS will be less likely to search solutions with values in the penalized range. This method
was first pioneered by [4]. Our implementation of GLS for multi-objective optimization is given by
Algorithm 5.

Algorithm 5 Guided Pareto Local Search [2]

function GuidedParetoLocalSearch([g1, . . . , gM ], λ, [I1, . . . , IK ], [c1, . . . , cK ], HL, SL,R)
archive = ∅
for 1 ≤ i ≤ K do

pi = 0
end for
for 1 ≤ j ≤M do

hj = gj + λj ·
∑K

i=1 pi · Ii
end for
for 1 ≤ r ≤ R do

GreedyParetoLocalSearch([h1, . . . , hM ], archive,HL, SL)
for 1 ≤ i ≤ K do

utili = Ii(archive) ·

(
ci · γi
|archive|

)
1 + pi

end for
for each i such that utili is maximum do

pi = pi + 1
for s ∈ archive such that Ii(s) = 1 do

V isited(s) = false
end for

end for
end for

end function

The augmented objective functions are created by adding the term λj ·
∑K

i=1 pi ·Ii to the original
objective functions g. pi is the specific accrued penalty for each feature and Ii is a 0-1 indicator
function that determines if a given solution exhibits the ith feature (i.e. if the variable is inside our
current “bucket”).

The calculation of the utilities is performed by first taking the ratio of solutions that exhibit each
feature (here γi is the number of solutions in the archive with i, that is γi =

∑K
i=1 Ii) and multiplying

it by the cost for the ith feature. The cost vector is a tuning parameter to the algorithm that
allows us to weight certain features more heavily than others. For general purpose multi-objective
algorithms we often cannot surmise anything before about the behavior of the variables and may set
all c = 1. This quantity is then divided by the current penalty value for this feature. The features
that have the highest utility value after this calculation are chosen to be penalized – any solutions
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that exhibit this feature will have their objective scores set higher than they otherwise would have
in the next iteration of the local search. Assuming a minimization problem this translates to a bias
against such solutions. Since the penalty value occurs in the denominator of the utility calculation
subsequent evaluations of utili for this feature will be smaller, meaning that we are less likely to
penalize this same feature again.

2.2.1 Running time of GPLS

GPLS is dominated by the loop that performs a local search and then calculates utilities and
penalizes the highest scoring features. Since GPLS is an approximation algorithm we can run it
as many times as is needed – the number of loops is controlled simply by parameter R. Since
GreedyPLS is O(SL2 ×G×M) we simply have that GPLS is O(SL2 ×G×M ×R).

3 NSGA-III

Evolutionary (or genetic) algorithms are a class of approximation algorithms that work by mutating
an existing solution and then evaluating its fitness. If the mutated version is better than the parent
solution it is “selected” and the competing, less-fit solutions are allowed to “die off”. The general
structure of a genetic algorithm is given in Figure 3.

Create initial population

Evaluate fitness of each individual

Apply selection

Crossover/mutation

Termination
criteria met?

Stop
Yes

Figure 3: Genetic algorithm flowchart

NSGA-III is a state-of-the-art evolutionary multi-objective optimization algorithm (EMOA). It
is heavily based (unsurprisingly) on NSGA-II, which is also an EMOA. NSGA-II performs well for
two or three objective problems, but scales poorly as the number of objectives increase. The reason
for this is that the number of non-dominated points in a proposed Pareto Front usually grows
exponentially with the number of objectives. NSGA-II relies on sorting the PF via the partial
order non-domination imposes on the set; if the number of non-dominated points is very large this
can require significant computation time. By significantly modifying the selection process used by
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NSGA-II, NSGA-III is able to improve both the accuracy of and time needed to find solutions to
MOOPs. Since NSGA-III is a genetic algorithm, it can continue on for an indefinite number of
iterations (known as generations). One generation of NSGA-III is given by Algorithm 6.

Algorithm 6 Generation t of NSGA-III [6]

Input: H constructed reference points Zs or supplied aspiration points Za, parent population
Pt
Output: Pt+1

St = ∅, i = 1
Qt = Recombination+Mutation(Pt)
Rt = Pt ∪Qt

(F1, F2, . . . ) = Non-dominated-sort(Rt)
repeat

St = St ∪ Fi and i = i+ 1
until |St| ≥ N
Last front to be included: Fl = Fi
if |St| = N then

Pt+1 = St, break
else

Pt+1 = ∪l−1
j=1Fj

Points to be chosen from Fl: K = N − |Pt+1|
Normalize objectives and create reference set Zr: Normalize(fn, St, Z

r, Zs, Za)
Associate each member s of St with a reference point: [π(s), d(s)] = Associate (St, Z

r)
Compute niche count of reference point j ∈ Zr: pj =

∑
s∈St/Ft

((π(s)− j) ? 1 : 0)

Choose K members one at a time from Fl to construct Pt+1: Niching(K, ρj, π, d, Z
r, Fl, Pt+1)

end if

Algorithm 6 begins at the crossover/mutation stage. The authors of NSGA-III recommend
simulated binary crossover (SBX) and polynomial mutation for Recombination+Mutation.
SBX merges two real values encoded as finite-length binary strings (typically floating point values
in a computer). For a complete description of SBX, see [5]. Polynomial mutation was previously
used in the description of GPLS. The objective values for each variable assignment generated by
this procedure are automatically calculated.

After crossover and mutation, the original parent population along with the new mutated popu-
lation are combined and enter the fitness phase. The first procedure the algorithm uses to determine
fitness is to apply a partial order onto the population via a non-dominated sort. The partial order
is achieved by assigning each point a rank; points that dominate another point in the population
and are themselves non-dominated are assigned rank “1”. These points are then removed from the
population and the process is repeated, assigning this second set rank “2”. Once again the process
repeats until no points are left in the population and each point has a rank assigned to it. The
steps for this sort are given in Algorithm 7.

Once a rank is assigned to each member we build up a unified population set by adding in all
the ranks starting with F1 (the most non-dominated points) until Fl, which is the point at which
the size of the population is greater than some predetermined N . If the size of the new population
is exactly N then the generation is complete, otherwise we continue on to the selection phase.

Since the population is greater than our target number of individuals, some must be pruned. It
is at this point that NSGA-III significantly diverges from NSGA-II. NSGA-II uses CrowdingDis-
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Algorithm 7 Non-dominated sort of the population [3]

function Non-dominated-sort(P )
for p ∈ P do

Sp = ∅
np = 0
for q inP do

if p dominates q then
Sp = Sp ∪ {q}

else if q dominates p then
np = np + 1

end if
end for
if np = 0 then

prank = 1
F1 = F1 ∪ {p}

end if
end for
i = 1
while Fi 6= ∅ do

Q = ∅
for p ∈ Fi do

for q ∈ Sp do
nq = nq − 1
if nq = 0 then

qrank = i+ 1
Q = Q ∪ {q}

end if
end for

end for
i = i+ 1
Fi = Q

end while
return {F1, F2, . . . }

end function
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tanceAssignment (see Algorithm 4) to break ties among points in the same rank. NSGA-III uses
a more elaborate selection mechanism. Search algorithms tend to “cluster” their solutions together
as incremental improvements are found. NSGA-II attempts to avoid this behavior by picking points
that are assigned a large distance value by CrowdingDistanceAssignment. Given the expo-
nential growth of non-dominated points as the number of objectives increase it appears unlikely
that a fast algorithm will find well or uniformly distributed candidate points for the PF. As [6]
says: “It is getting increasingly clear that it is too much to expect from a single population-based
optimization algorithm to have convergence of its population near the Pareto-optimal front and si-
multaneously it is distributed uniformly around the entire front in a large-dimensional problem.”
NSGA-III cedes some style points by beginning with a presumably well-distributed set of reference
points and selecting those points fit certain closeness metrics to these points.

During the fitness phase points were added to the population one rank at a time. The final
rank that caused the population to exceed its maximum size, Fl, is the rank from which we need
to remove members; all previous ranks will be included in Pt+1. After including all points with
rank less than l in Pt+1 we need to choose the remaining K = N − |Pt+1| points. To achieve
this normalized objectvies fn and reference points Zr are created from the supplied objectives and
reference points (these reference points can be automatically generated: see [7]). This procedure
can be found as Algorithm 8.

Algorithm 8 Normalize objectives and create reference set [3]

function Normalize(fn, St, Z
r, Zs, Za)

for 1 ≤ j ≤M do
Compute ideal point: zmin = mins∈St fj(s)
Translate objectives: f ′j(s) = fj(s)− zminj ∀s ∈ St
Compute extreme points (zj,max), j = 1, . . . ,M) of St

end for
Compute intercepts aj for j = 1, . . . ,M

Normalize objectives: fni (x) =
f ′i(x)

ai
, for i = 1, 2, . . . ,M .

if Za is given then
Map each (aspiration) point on a normalized hyper-plane using the normalized objectives

and save the points in the set Zr

else
Zr = Zs

end if
end function

The normalized set is created by treating the optimal objective across all points in the population
as a vector, i.e. creating the ideal point z̄ = (zmin1 , zmin2 , . . . ) where zmini is the optimal value for
objective i among all points in St. Augmented objective functions f ′j are created by subtracting off
the ideal point z̄, which effectively becomes a zero vector in the augmented objective space. The
maximum point for each augmented objective zj,max is found in St. For each augmented objective
the intercepts aj are discovered and the normalized objectives are created by dividing the augmented
objectives (calculated by subtracting off zminj ) by the intercepts. The normalized objectives and
their intercepts form a hyper-plane in M -space which has the effect of equalizing those objectives
that are scaled differently. If the reference set was auto-calculated then these points already exist
on the hyper-plane, otherwise the user-supplied points are translated to the normalized space and
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returned as Zr. After the objectives are normalized and a reference set is chosen each member s of
the population St is associated with a reference point by a special distance metric. This association
is given in Algorithm 9.

Algorithm 9 Associate each member s of St with a reference point [3]

function Associate(St, Z
r)

for z ∈ Zr do
Compute reference line w = z

end for
for s ∈ St do

for w ∈ Zr do
Compute d⊥(s,w) = ||(s−wT sw/||w||2)||

end for
Assign π(s) = w : arg minw∈Zr d⊥(s,w)
Assign d(s) = d⊥(s, π(s))

end for
end function

The distance metric between population points and reference points is calculated by first drawing
hyper-lines from the origin of the normalized space through each reference point. The perpendicular
distances of each point in the population from these reference lines are calculated and for each
point the closest reference line is chosen to be associated with it. Now that each population point is
associated with a reference point (it may be that each reference point has more than one population
point), we use a “niching” procedure to selectively choose which points will be in the final population.
The niching procedure is given in Algorithm 10.

Algorithm 10 Choose K members one at a time from Fl to construct Pt+1 [3]

function Niching(K, ρj, π, d, Z
r, Fl, Pt+1)

k = 1
while k ≤ K do

Jmin = {j : arg minj∈Zr ρj}
j̄ = random (Jmin)
Ij̄ = {s : π(s) = j̄, s ∈ Fl}
if Ij̄ 6= 0 then

if ρj̄ = 0 then

Pt+1 = Pt+1 ∪
(
s : arg mins∈Ij̄ d(s)

)
else

Pt+1 = Pt+1 ∪ random
(
Ij̄
)

end if
ρj̄ = ρj̄ + 1, Fl = Fl \ s
k = k + 1

else
Zr = Zr / {j̄}

end if
end while

end function
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The Niching procedure must select K additional members from Fl for Pt+1. Let ρj be the
number of population points in all ranks except Fl associated to the jth reference point. We find
Jmin, the set of reference points having the minimum number of population points associated with
it (i.e. the smallest ρ). Let j̄ be any one of these reference points. If ρj̄ = 0 then there is no
member of Pt+1 that is associated with reference point j̄. In such a scenario the closest of the
points from Fl that is associated with j̄ is chosen for inclusion in Pt+1 (assuming there exists such
a point). If ρj̄ > 0, indicating that there already exists a population point associated with j̄, a
random point from those in Fl associated with j̄ is included. In essence, Niching selects points for
Pt+1 by favoring those points close to reference points.

After Niching is finished there is a new population Pt+1 with N members. The new population
has individuals selected in order of their non-denomination ranks, with closeness to reference points
used as the tie-breaker. The termination criteria can now be evaluated (usually simply a fixed
number of iterations) and the algorithm restarted on this new population if it is not met.

3.1 Running time of NSGA-III

For a complete analysis of the complexity of a generation of NSGA-III see [6]. If N is the size
of the target population and M is the number of objectives in the MOOP then the complexity of
NSGA-III is O(N2 logM−2N) or O(N2M), whichever is larger.

4 Experimental results

4.1 Quality indicators

In multi-objective optimization problems our goal is to find the Pareto Front, which may contain
many members. To evaluate an algorithm, we must have some way of knowing how “good” a
candidate PF is. The quality of a PF can be measured both by how close it is to the true PF as
well its “spread” (how uniform its coverage over the true PF is) [9]. Several metrics such as the
“C-Metric” for coverage and “D-metric” for distance are used throughout the literature. We shall
use the inverse generational distance (IGD) metric, which combines both coverage and distance into
a single value [10] [11].

4.2 Test problems

To compare the algorithms we used a set of four test problems described in [5]. The test problems
are scalable to an arbitrary number of objectives, although the 3-objective versions are presented
here. The parameters for GPLS are given in Figure 4 and the parameters for NSGA-III are given
in 5.
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DTLZ1 DTLZ1 DTLZ3 DTLZ4
λ 0.5 0.1 0.2 0.2
Penalties 200 200 200 200
GPLS generations 400 250 1000 600
Polynomial mutation prob. 1/n 1/n 1/n 1/n
Polynomial mutation η 0.05 0.1 0.3 0.2
HL 100 100 100 100
GreedyPLS generations 10 10 20 10

Figure 4: Parameters for GPLS

DTLZ1 DTLZ1 DTLZ3 DTLZ4
SBX probability 1 1 1 1
SBX η 30 30 30 30
Polynomial mutation prob. 1/n 1/n 1/n 1/n
Polynomial mutation η 20 20 20 20
Generations 400 250 1000 600

Figure 5: Parameters for NSGA-III

4.2.1 DTLZ1

Minimize f1(x) = 1
2
x1x2 · · ·xM−1(1 + g(xM)),

Minimize f2(x) = 1
2
x1x2 · · · (1− xM−1)(1 + g(xM)),

...
...

Minimize fM−1(x) = 1
2
x1(1− x2)(1 + g(xM)),

Minimize fM(x) = 1
2
(1− x1)(1 + g(xM)),

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,

with g(xM) = 100

[
|xM |+

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

]
.
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(a) GPLS, IGD = 0.125268
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(b) NSGA-III, IGD = 0.002023

Figure 6: Obtained solutions for DTZL1
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4.2.2 DTLZ2

Minimize f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Minimize f2(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Minimize f3(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · sin(xM−2π/2),

...
...

Minimize fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2),
Minimize fM(x) = (1 + g(xM)) sin(x2π/2),

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,
where g(xM) =

∑
xi∈xM

(xi − 0.5)2.

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

•

•

•

•
•

•
•
•

•

•
•

•

• •
•

•

•

•

••
•

•

•
•

•

•

•

••

•

•

•

•

•

•

••
••

••

•
•

•
•

•
•

•
•• ••
•

• •

••
•

•
• •

•

•

••

•

••

•

•

•

•

•

•

•
•
•

•

•
•

• •

•

•

•

•

•

•
•

•

•
••

• •

•

•

•

•

•••••••

•••

•••

(a) GPLS, IGD = 0.091910
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(b) NSGA-III, IGD = 0.002349

Figure 7: Obtained solutions for DTZL2

4.2.3 DTLZ3

Minimize f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Minimize f2(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Minimize f3(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · sin(xM−2π/2),

...
...

Minimize fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2),
Minimize fM(x) = (1 + g(xM)) sin(x2π/2),

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,

where g(xM) = 100

[
|xM |

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

]
.
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(a) GPLS, IGD = 0.698297
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(b) NSGA-III, IGD = 0.001373

Figure 8: Obtained solutions for DTZL3

4.2.4 DTLZ4

Minimize f1(x) = (1 + g(xM)) cos(xα1π/2) cos(xα2π/2) · · · cos(xαM−2π/2) cos(xαM−1π/2),
Minimize f2(x) = (1 + g(xM)) cos(xα1π/2) cos(xα2π/2) · · · cos(xαM−2π/2) sin(xαM−1π/2),
Minimize f3(x) = (1 + g(xM)) cos(xα1π/2) cos(xα2π/2) · · · sin(xαM−2π/2),

...
...

Minimize fM−1(x) = (1 + g(xM)) cos(xα1π/2) sin(xα2π/2),
Minimize fM(x) = (1 + g(xM)) sin(xα2π/2),

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,
where g(xM) =

∑
xi∈xM

(xi − 0.5)2, α = 100.
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(a) GPLS, IGD = 0.075753
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(b) NSGA-III, IGD = 0.000455

Figure 9: Obtained solutions for DTZL4

4.3 Results

For each test problem and algorithm twenty instances were run. The results of these runs can be
found in Figure 10.

16



GPLS NSGA-III

DTLZ1
Best 0.125268 0.000760
Worst 0.715844 0.020530
Average 0.327588 0.005068

DTLZ2
Best 0.084152 0.001585
Worst 0.214039 0.006910
Average 0.116311 0.002938

DTLZ3
Best 0.343200 0.001374
Worst 2.178580 0.011295
Average 1.138119 0.004961

DTLZ4
Best 0.075753 0.000245
Worst 1.041450 0.532995
Average 0.471198 0.133457

Figure 10: Results (IGD) of test problems

5 Conclusion

GPLS and NSGA-III are search algorithms for solving multi-objective optimization problems. Both
algorithms prefer points that are non-dominated by other points in the candidate Pareto-optimal
front. The algorithms differ in two main ways: in how they generate new points, and how points
are removed from the solution set when it grows too large.

GPLS generates new points simply by randomly mutating one variable of an existing point
and evaluating its fitness. NSGA-III first merges two existing points together via simulated binary
crossover before the mutation. The mechanism chosen by NSGA-III helps ensure that candidate
points are “pushed” towards the existing solution set, reducing the number of non-optimal points
considered.

When the solution set grows too large GreedyPLS uses the crowding distance of the points to
determine which will be removed from the solution set. Points that are heavily clustered together
are less likely to be chosen than outlier points which (hopefully) will help the algorithm explore
new areas of the Pareto Front. NSGA-III uses a reference point based approach: objectives are
normalized and then points are associated with reference lines that shoot out from the origin to
each reference point. Points are chosen preferentially if they are near the reference points.

Experimentally NSGA-III produces superior solutions to GPLS. GPLS, despite its penalization
scheme, performed particularly poorly on DLTZ3 which was designed specifically to test an algo-
rithm’s ability to break out of a local optimum and converge to the global optimum. The core
neighborhood search mechanism of GLS is ill-suited to problems of a continuous nature and the
algorithm is unable to effectively navigate the search space. It is recommended to use NSGA-III
for solving multi-objective optimization problems.
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